#include <iostream>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
class MatrixReplacement;
namespace internal {
template <>
struct traits<MatrixReplacement> : public Eigen::internal::traits<Eigen::SparseMatrix<double> > {};
}
}
public:
typedef double Scalar;
typedef double RealScalar;
typedef int StorageIndex;
Index
rows()
const {
return mp_mat->rows(); }
Index
cols()
const {
return mp_mat->cols(); }
template <typename Rhs>
}
MatrixReplacement() : mp_mat(0) {}
void attachMyMatrix(const SparseMatrix<double>& mat) { mp_mat = &mat; }
const SparseMatrix<double> my_matrix() const { return *mp_mat; }
private:
const SparseMatrix<double>* mp_mat;
};
namespace internal {
template <typename Rhs>
struct generic_product_impl<MatrixReplacement, Rhs, SparseShape, DenseShape,
GemvProduct>
: generic_product_impl_base<MatrixReplacement, Rhs, generic_product_impl<MatrixReplacement, Rhs> > {
typedef typename Product<MatrixReplacement, Rhs>::Scalar Scalar;
template <typename Dest>
static void scaleAndAddTo(Dest& dst, const MatrixReplacement& lhs, const Rhs& rhs, const Scalar& alpha) {
eigen_assert(alpha == Scalar(1) && "scaling is not implemented");
EIGEN_ONLY_USED_FOR_DEBUG(alpha);
for (Index i = 0; i < lhs.cols(); ++i) dst += rhs(i) * lhs.my_matrix().col(i);
}
};
}
}
int main() {
int n = 10;
S = S.transpose() * S;
MatrixReplacement A;
A.attachMyMatrix(S);
{
std::cout <<
"CG: #iterations: " << cg.
iterations() <<
", estimated error: " << cg.
error() << std::endl;
}
{
std::cout <<
"BiCGSTAB: #iterations: " << bicg.
iterations() <<
", estimated error: " << bicg.
error() << std::endl;
}
{
Eigen::GMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "GMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::DGMRES<MatrixReplacement, Eigen::IdentityPreconditioner> gmres;
gmres.compute(A);
x = gmres.solve(b);
std::cout << "DGMRES: #iterations: " << gmres.iterations() << ", estimated error: " << gmres.error() << std::endl;
}
{
Eigen::MINRES<MatrixReplacement, Eigen::Lower | Eigen::Upper, Eigen::IdentityPreconditioner> minres;
minres.compute(A);
x = minres.solve(b);
std::cout << "MINRES: #iterations: " << minres.iterations() << ", estimated error: " << minres.error()
<< std::endl;
}
}
A bi conjugate gradient stabilized solver for sparse square problems.
Definition BiCGSTAB.h:153
A conjugate gradient solver for sparse (or dense) self-adjoint problems.
Definition ConjugateGradient.h:152
static const RandomReturnType Random()
Definition Random.h:112
Derived & derived()
Definition EigenBase.h:49
RealScalar error() const
Definition IterativeSolverBase.h:270
Derived & compute(const EigenBase< MatrixDerived > &A)
Definition IterativeSolverBase.h:210
Index iterations() const
Definition IterativeSolverBase.h:262
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Derived & setRandom(Index size)
Definition Random.h:147
Expression of the product of two arbitrary matrices or vectors.
Definition Product.h:202
A versatible sparse matrix representation.
Definition SparseUtil.h:47
const Solve< Derived, Rhs > solve(const MatrixBase< Rhs > &b) const
Definition SparseSolverBase.h:84
Namespace containing all symbols from the Eigen library.
Definition Core:137
const Product< MatrixDerived, PermutationDerived, AliasFreeProduct > operator*(const MatrixBase< MatrixDerived > &matrix, const PermutationBase< PermutationDerived > &permutation)
Definition PermutationMatrix.h:471
const int Dynamic
Definition Constants.h:25
Definition EigenBase.h:33
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition EigenBase.h:61
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition EigenBase.h:59