11#ifndef EIGEN_SPARSE_LU_H
12#define EIGEN_SPARSE_LU_H
15#include "./InternalHeaderCheck.h"
19template <
typename MatrixType_,
typename OrderingType_ = COLAMDOrdering<
typename MatrixType_::StorageIndex>>
21template <
typename MappedSparseMatrixType>
22struct SparseLUMatrixLReturnType;
23template <
typename MatrixLType,
typename MatrixUType>
24struct SparseLUMatrixUReturnType;
26template <
bool Conjugate,
class SparseLUType>
27class SparseLUTransposeView :
public SparseSolverBase<SparseLUTransposeView<Conjugate, SparseLUType>> {
30 using APIBase::m_isInitialized;
33 typedef typename SparseLUType::Scalar Scalar;
34 typedef typename SparseLUType::StorageIndex StorageIndex;
35 typedef typename SparseLUType::MatrixType MatrixType;
36 typedef typename SparseLUType::OrderingType OrderingType;
38 enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
40 SparseLUTransposeView() : APIBase(), m_sparseLU(NULL) {}
41 SparseLUTransposeView(
const SparseLUTransposeView& view) : APIBase() {
42 this->m_sparseLU = view.m_sparseLU;
43 this->m_isInitialized = view.m_isInitialized;
45 void setIsInitialized(
const bool isInitialized) { this->m_isInitialized = isInitialized; }
46 void setSparseLU(SparseLUType* sparseLU) { m_sparseLU = sparseLU; }
47 using APIBase::_solve_impl;
48 template <
typename Rhs,
typename Dest>
49 bool _solve_impl(
const MatrixBase<Rhs>& B, MatrixBase<Dest>& X_base)
const {
50 Dest& X(X_base.derived());
51 eigen_assert(m_sparseLU->info() ==
Success &&
"The matrix should be factorized first");
52 EIGEN_STATIC_ASSERT((Dest::Flags &
RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
55 for (Index j = 0; j < B.cols(); ++j) {
56 X.col(j) = m_sparseLU->colsPermutation() * B.const_cast_derived().col(j);
59 m_sparseLU->matrixU().template solveTransposedInPlace<Conjugate>(X);
62 m_sparseLU->matrixL().template solveTransposedInPlace<Conjugate>(X);
65 for (Index j = 0; j < B.cols(); ++j) X.col(j) = m_sparseLU->rowsPermutation().transpose() * X.col(j);
68 inline Index rows()
const {
return m_sparseLU->rows(); }
69 inline Index cols()
const {
return m_sparseLU->cols(); }
72 SparseLUType* m_sparseLU;
73 SparseLUTransposeView& operator=(
const SparseLUTransposeView&);
149template <
typename MatrixType_,
typename OrderingType_>
151 public internal::SparseLUImpl<typename MatrixType_::Scalar, typename MatrixType_::StorageIndex> {
154 using APIBase::m_isInitialized;
157 using APIBase::_solve_impl;
159 typedef MatrixType_ MatrixType;
160 typedef OrderingType_ OrderingType;
161 typedef typename MatrixType::Scalar Scalar;
162 typedef typename MatrixType::RealScalar RealScalar;
163 typedef typename MatrixType::StorageIndex StorageIndex;
165 typedef internal::MappedSuperNodalMatrix<Scalar, StorageIndex> SCMatrix;
169 typedef internal::SparseLUImpl<Scalar, StorageIndex> Base;
171 enum { ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
179 : m_lastError(
""), m_Ustore(0, 0, 0, 0, 0, 0), m_symmetricmode(false), m_diagpivotthresh(1.0), m_detPermR(1) {
187 : m_lastError(
""), m_Ustore(0, 0, 0, 0, 0, 0), m_symmetricmode(false), m_diagpivotthresh(1.0), m_detPermR(1) {
197 void factorize(
const MatrixType& matrix);
198 void simplicialfactorize(
const MatrixType& matrix);
229 const SparseLUTransposeView<false, SparseLU<MatrixType_, OrderingType_>>
transpose() {
230 SparseLUTransposeView<false, SparseLU<MatrixType_, OrderingType_>> transposeView;
231 transposeView.setSparseLU(
this);
232 transposeView.setIsInitialized(this->m_isInitialized);
233 return transposeView;
250 const SparseLUTransposeView<true, SparseLU<MatrixType_, OrderingType_>>
adjoint() {
251 SparseLUTransposeView<true, SparseLU<MatrixType_, OrderingType_>> adjointView;
252 adjointView.setSparseLU(
this);
253 adjointView.setIsInitialized(this->m_isInitialized);
275 SparseLUMatrixLReturnType<SCMatrix>
matrixL()
const {
return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore); }
284 SparseLUMatrixUReturnType<SCMatrix, Map<SparseMatrix<Scalar, ColMajor, StorageIndex>>>
matrixU()
const {
285 return SparseLUMatrixUReturnType<SCMatrix, Map<SparseMatrix<Scalar, ColMajor, StorageIndex>>>(m_Lstore, m_Ustore);
303#ifdef EIGEN_PARSED_BY_DOXYGEN
312 template <
typename Rhs>
327 eigen_assert(m_isInitialized &&
"Decomposition is not initialized.");
337 template <
typename Rhs,
typename Dest>
340 eigen_assert(m_factorizationIsOk &&
"The matrix should be factorized first");
341 EIGEN_STATIC_ASSERT((Dest::Flags &
RowMajorBit) == 0, THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
351 this->
matrixL().solveInPlace(X);
352 this->
matrixU().solveInPlace(X);
373 eigen_assert(m_factorizationIsOk &&
"The matrix should be factorized first.");
375 Scalar det = Scalar(1.);
378 for (
Index j = 0; j < this->
cols(); ++j) {
379 for (
typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) {
380 if (it.index() == j) {
381 det *=
abs(it.value());
403 eigen_assert(m_factorizationIsOk &&
"The matrix should be factorized first.");
404 Scalar det = Scalar(0.);
405 for (
Index j = 0; j < this->
cols(); ++j) {
406 for (
typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) {
407 if (it.row() < j)
continue;
409 det +=
log(
abs(it.value()));
424 eigen_assert(m_factorizationIsOk &&
"The matrix should be factorized first.");
429 for (
Index j = 0; j < this->
cols(); ++j) {
430 for (
typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) {
431 if (it.index() == j) {
434 else if (it.value() == 0)
440 return det * m_detPermR * m_detPermC;
450 eigen_assert(m_factorizationIsOk &&
"The matrix should be factorized first.");
452 Scalar det = Scalar(1.);
455 for (
Index j = 0; j < this->
cols(); ++j) {
456 for (
typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) {
457 if (it.index() == j) {
463 return (m_detPermR * m_detPermC) > 0 ? det : -det;
475 void initperfvalues() {
476 m_perfv.panel_size = 16;
478 m_perfv.maxsuper = 128;
481 m_perfv.fillfactor = 20;
485 mutable ComputationInfo m_info;
486 bool m_factorizationIsOk;
488 std::string m_lastError;
491 Map<SparseMatrix<Scalar, ColMajor, StorageIndex>> m_Ustore;
492 PermutationType m_perm_c;
493 PermutationType m_perm_r;
496 typename Base::GlobalLU_t m_glu;
499 bool m_symmetricmode;
501 internal::perfvalues m_perfv;
502 RealScalar m_diagpivotthresh;
503 Index m_nnzL, m_nnzU;
504 Index m_detPermR, m_detPermC;
527template <
typename MatrixType,
typename OrderingType>
536 ord(m_mat, m_perm_c);
539 if (m_perm_c.size()) {
543 ei_declare_aligned_stack_constructed_variable(
544 StorageIndex, outerIndexPtr, mat.cols() + 1,
545 mat.isCompressed() ?
const_cast<StorageIndex*
>(mat.outerIndexPtr()) : 0);
549 if (!mat.isCompressed())
550 IndexVector::Map(outerIndexPtr, mat.cols() + 1) = IndexVector::Map(m_mat.outerIndexPtr(), mat.cols() + 1);
553 for (
Index i = 0; i < mat.cols(); i++) {
554 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
555 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i + 1] - outerIndexPtr[i];
561 internal::coletree(m_mat, m_etree, firstRowElt);
564 if (!m_symmetricmode) {
567 internal::treePostorder(StorageIndex(m_mat.cols()), m_etree, post);
570 Index m = m_mat.cols();
572 for (
Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i));
577 for (
Index i = 0; i < m; i++) post_perm.
indices()(i) = post(i);
580 if (m_perm_c.size()) {
581 m_perm_c = post_perm * m_perm_c;
586 m_analysisIsOk =
true;
610template <
typename MatrixType,
typename OrderingType>
612 using internal::emptyIdxLU;
613 eigen_assert(m_analysisIsOk &&
"analyzePattern() should be called first");
614 eigen_assert((matrix.rows() == matrix.cols()) &&
"Only for squared matrices");
616 m_isInitialized =
true;
621 if (m_perm_c.size()) {
624 const StorageIndex* outerIndexPtr;
625 if (matrix.isCompressed())
626 outerIndexPtr = matrix.outerIndexPtr();
628 StorageIndex* outerIndexPtr_t =
new StorageIndex[matrix.cols() + 1];
629 for (
Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i];
630 outerIndexPtr = outerIndexPtr_t;
632 for (
Index i = 0; i < matrix.cols(); i++) {
633 m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i];
634 m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i + 1] - outerIndexPtr[i];
636 if (!matrix.isCompressed())
delete[] outerIndexPtr;
638 m_perm_c.resize(matrix.cols());
639 for (StorageIndex i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i;
642 Index m = m_mat.rows();
643 Index n = m_mat.cols();
644 Index nnz = m_mat.nonZeros();
645 Index maxpanel = m_perfv.panel_size * m;
650 Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu);
652 m_lastError =
"UNABLE TO ALLOCATE WORKING MEMORY\n\n";
653 m_factorizationIsOk =
false;
678 tempv.
setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, m));
685 if (m_symmetricmode ==
true)
686 Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
688 Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end);
691 m_perm_r.indices().setConstant(-1);
695 m_glu.supno(0) = emptyIdxLU;
696 m_glu.xsup.setConstant(0);
697 m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) =
Index(0);
708 for (jcol = 0; jcol < n;) {
710 Index panel_size = m_perfv.panel_size;
711 for (k = jcol + 1; k < (std::min)(jcol + panel_size, n); k++) {
712 if (relax_end(k) != emptyIdxLU) {
713 panel_size = k - jcol;
717 if (k == n) panel_size = n - jcol;
720 Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune,
721 marker, parent, xplore, m_glu);
724 Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu);
727 for (jj = jcol; jj < jcol + panel_size; jj++) {
735 info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune,
736 marker, parent, xplore, m_glu);
738 m_lastError =
"UNABLE TO EXPAND MEMORY IN COLUMN_DFS() ";
740 m_factorizationIsOk =
false;
747 info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu);
749 m_lastError =
"UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() ";
751 m_factorizationIsOk =
false;
757 info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k, m_perm_r.indices(), dense_k, m_glu);
759 m_lastError =
"UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() ";
761 m_factorizationIsOk =
false;
767 info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.
indices(), pivrow, m_glu);
769 m_lastError =
"THE MATRIX IS STRUCTURALLY SINGULAR";
771 std::ostringstream returnInfo;
772 returnInfo <<
" ... ZERO COLUMN AT ";
774 m_lastError += returnInfo.str();
777 m_factorizationIsOk =
false;
784 if (pivrow != jj) m_detPermR = -m_detPermR;
787 Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu);
790 for (i = 0; i < nseg; i++) {
792 repfnz_k(irep) = emptyIdxLU;
798 m_detPermR = m_perm_r.determinant();
799 m_detPermC = m_perm_c.determinant();
802 Base::countnz(n, m_nnzL, m_nnzU, m_glu);
804 Base::fixupL(n, m_perm_r.indices(), m_glu);
807 m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup);
813 m_factorizationIsOk =
true;
816template <
typename MappedSupernodalType>
817struct SparseLUMatrixLReturnType : internal::no_assignment_operator {
818 typedef typename MappedSupernodalType::Scalar Scalar;
819 explicit SparseLUMatrixLReturnType(
const MappedSupernodalType& mapL) : m_mapL(mapL) {}
820 Index rows()
const {
return m_mapL.rows(); }
821 Index cols()
const {
return m_mapL.cols(); }
822 template <
typename Dest>
823 void solveInPlace(MatrixBase<Dest>& X)
const {
824 m_mapL.solveInPlace(X);
826 template <
bool Conjugate,
typename Dest>
827 void solveTransposedInPlace(MatrixBase<Dest>& X)
const {
828 m_mapL.template solveTransposedInPlace<Conjugate>(X);
831 SparseMatrix<Scalar, ColMajor, Index> toSparse()
const {
833 for (Index i = 0; i < cols(); i++) {
834 typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
835 for (; iter; ++iter) {
836 if (iter.row() > iter.col()) {
837 colCount(iter.col())++;
841 SparseMatrix<Scalar, ColMajor, Index> sL(rows(), cols());
842 sL.reserve(colCount);
843 for (Index i = 0; i < cols(); i++) {
844 sL.insert(i, i) = 1.0;
845 typename MappedSupernodalType::InnerIterator iter(m_mapL, i);
846 for (; iter; ++iter) {
847 if (iter.row() > iter.col()) {
848 sL.insert(iter.row(), iter.col()) = iter.value();
856 const MappedSupernodalType& m_mapL;
859template <
typename MatrixLType,
typename MatrixUType>
860struct SparseLUMatrixUReturnType : internal::no_assignment_operator {
861 typedef typename MatrixLType::Scalar Scalar;
862 SparseLUMatrixUReturnType(
const MatrixLType& mapL,
const MatrixUType& mapU) : m_mapL(mapL), m_mapU(mapU) {}
863 Index rows()
const {
return m_mapL.rows(); }
864 Index cols()
const {
return m_mapL.cols(); }
866 template <
typename Dest>
867 void solveInPlace(MatrixBase<Dest>& X)
const {
868 Index nrhs = X.cols();
870 for (Index k = m_mapL.nsuper(); k >= 0; k--) {
871 Index fsupc = m_mapL.supToCol()[k];
872 Index lda = m_mapL.colIndexPtr()[fsupc + 1] - m_mapL.colIndexPtr()[fsupc];
873 Index nsupc = m_mapL.supToCol()[k + 1] - fsupc;
874 Index luptr = m_mapL.colIndexPtr()[fsupc];
877 for (Index j = 0; j < nrhs; j++) {
878 X(fsupc, j) /= m_mapL.valuePtr()[luptr];
882 Map<const Matrix<Scalar, Dynamic, Dynamic, ColMajor>, 0, OuterStride<>> A(&(m_mapL.valuePtr()[luptr]), nsupc,
883 nsupc, OuterStride<>(lda));
884 typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc);
885 U = A.template triangularView<Upper>().solve(U);
888 for (Index j = 0; j < nrhs; ++j) {
889 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
890 typename MatrixUType::InnerIterator it(m_mapU, jcol);
892 Index irow = it.index();
893 X(irow, j) -= X(jcol, j) * it.value();
900 template <
bool Conjugate,
typename Dest>
901 void solveTransposedInPlace(MatrixBase<Dest>& X)
const {
903 Index nrhs = X.cols();
905 for (Index k = 0; k <= m_mapL.nsuper(); k++) {
906 Index fsupc = m_mapL.supToCol()[k];
907 Index lda = m_mapL.colIndexPtr()[fsupc + 1] - m_mapL.colIndexPtr()[fsupc];
908 Index nsupc = m_mapL.supToCol()[k + 1] - fsupc;
909 Index luptr = m_mapL.colIndexPtr()[fsupc];
911 for (Index j = 0; j < nrhs; ++j) {
912 for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) {
913 typename MatrixUType::InnerIterator it(m_mapU, jcol);
915 Index irow = it.index();
916 X(jcol, j) -= X(irow, j) * (Conjugate ?
conj(it.value()) : it.value());
921 for (Index j = 0; j < nrhs; j++) {
922 X(fsupc, j) /= (Conjugate ?
conj(m_mapL.valuePtr()[luptr]) : m_mapL.valuePtr()[luptr]);
925 Map<const Matrix<Scalar, Dynamic, Dynamic, ColMajor>, 0, OuterStride<>> A(&(m_mapL.valuePtr()[luptr]), nsupc,
926 nsupc, OuterStride<>(lda));
927 typename Dest::RowsBlockXpr U = X.derived().middleRows(fsupc, nsupc);
929 U = A.adjoint().template triangularView<Lower>().solve(U);
931 U = A.transpose().template triangularView<Lower>().solve(U);
936 SparseMatrix<Scalar, RowMajor, Index> toSparse() {
938 for (Index i = 0; i < cols(); i++) {
939 typename MatrixLType::InnerIterator iter(m_mapL, i);
940 for (; iter; ++iter) {
941 if (iter.row() <= iter.col()) {
942 rowCount(iter.row())++;
947 SparseMatrix<Scalar, RowMajor, Index> sU(rows(), cols());
948 sU.reserve(rowCount);
949 for (Index i = 0; i < cols(); i++) {
950 typename MatrixLType::InnerIterator iter(m_mapL, i);
951 for (; iter; ++iter) {
952 if (iter.row() <= iter.col()) {
953 sU.insert(iter.row(), iter.col()) = iter.value();
958 const SparseMatrix<Scalar, RowMajor, Index> u = m_mapU;
963 const MatrixLType& m_mapL;
964 const MatrixUType& m_mapU;
static const ConstantReturnType Ones()
Definition CwiseNullaryOp.h:663
static const ConstantReturnType Zero()
Definition CwiseNullaryOp.h:520
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition EigenBase.h:61
Derived & derived()
Definition EigenBase.h:49
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition EigenBase.h:59
A matrix or vector expression mapping an existing array of data.
Definition Map.h:96
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
InverseReturnType inverse() const
Definition PermutationMatrix.h:172
Permutation matrix.
Definition PermutationMatrix.h:280
const IndicesType & indices() const
Definition PermutationMatrix.h:334
Derived & setConstant(Index size, const Scalar &val)
Definition CwiseNullaryOp.h:360
Derived & setZero(Index size)
Definition CwiseNullaryOp.h:563
constexpr void resize(Index rows, Index cols)
Definition PlainObjectBase.h:294
Pseudo expression representing a solving operation.
Definition Solve.h:62
Sparse supernodal LU factorization for general matrices.
Definition SparseLU.h:151
SparseLUMatrixUReturnType< SCMatrix, Map< SparseMatrix< Scalar, ColMajor, StorageIndex > > > matrixU() const
Give the MatrixU.
Definition SparseLU.h:284
const Solve< SparseLU, Rhs > solve(const MatrixBase< Rhs > &B) const
Solve a system .
void setPivotThreshold(const RealScalar &thresh)
Definition SparseLU.h:301
Index cols() const
Give the numver of columns.
Definition SparseLU.h:262
Scalar logAbsDeterminant() const
Give the natural log of the absolute determinant.
Definition SparseLU.h:399
Index rows() const
Give the number of rows.
Definition SparseLU.h:259
Index nnzU() const
Give the number of non zero in matrix U.
Definition SparseLU.h:471
const SparseLUTransposeView< true, SparseLU< MatrixType_, OrderingType_ > > adjoint()
Return a solver for the adjointed matrix.
Definition SparseLU.h:250
void factorize(const MatrixType &matrix)
Factorize the matrix to get the solver ready.
Definition SparseLU.h:611
std::string lastErrorMessage() const
Give a human readable error.
Definition SparseLU.h:335
SparseLUMatrixLReturnType< SCMatrix > matrixL() const
Give the matrixL.
Definition SparseLU.h:275
void compute(const MatrixType &matrix)
Analyze and factorize the matrix so the solver is ready to solve.
Definition SparseLU.h:210
ComputationInfo info() const
Reports whether previous computation was successful.
Definition SparseLU.h:326
Scalar signDeterminant()
Give the sign of the determinant.
Definition SparseLU.h:423
const PermutationType & colsPermutation() const
Give the column matrix permutation.
Definition SparseLU.h:299
SparseLU()
Basic constructor of the solver.
Definition SparseLU.h:178
Scalar absDeterminant()
Give the absolute value of the determinant.
Definition SparseLU.h:371
void analyzePattern(const MatrixType &matrix)
Compute the column permutation.
Definition SparseLU.h:528
Index nnzL() const
Give the number of non zero in matrix L.
Definition SparseLU.h:468
const PermutationType & rowsPermutation() const
Give the row matrix permutation.
Definition SparseLU.h:293
void isSymmetric(bool sym)
Let you set that the pattern of the input matrix is symmetric.
Definition SparseLU.h:265
SparseLU(const MatrixType &matrix)
Constructor of the solver already based on a specific matrix.
Definition SparseLU.h:186
Scalar determinant()
Give the determinant.
Definition SparseLU.h:449
const SparseLUTransposeView< false, SparseLU< MatrixType_, OrderingType_ > > transpose()
Return a solver for the transposed matrix.
Definition SparseLU.h:229
A versatible sparse matrix representation.
Definition SparseUtil.h:47
Index cols() const
Definition SparseMatrix.h:161
Index rows() const
Definition SparseMatrix.h:159
A base class for sparse solvers.
Definition SparseSolverBase.h:67
SparseSolverBase()
Definition SparseSolverBase.h:70
Expression of a fixed-size or dynamic-size sub-vector.
Definition VectorBlock.h:58
ComputationInfo
Definition Constants.h:438
@ NumericalIssue
Definition Constants.h:442
@ Success
Definition Constants.h:440
const unsigned int RowMajorBit
Definition Constants.h:70
Namespace containing all symbols from the Eigen library.
Definition Core:137
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_conjugate_op< typename Derived::Scalar >, const Derived > conj(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_log_op< typename Derived::Scalar >, const Derived > log(const Eigen::ArrayBase< Derived > &x)