![]() |
Eigen
3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
|
Tridiagonal decomposition of a selfadjoint matrix.
This is defined in the Eigenvalues module.
MatrixType_ | the type of the matrix of which we are computing the tridiagonal decomposition; this is expected to be an instantiation of the Matrix class template. |
This class performs a tridiagonal decomposition of a selfadjoint matrix \( A \) such that: \( A = Q T Q^* \) where \( Q \) is unitary and \( T \) a real symmetric tridiagonal matrix.
A tridiagonal matrix is a matrix which has nonzero elements only on the main diagonal and the first diagonal below and above it. The Hessenberg decomposition of a selfadjoint matrix is in fact a tridiagonal decomposition. This class is used in SelfAdjointEigenSolver to compute the eigenvalues and eigenvectors of a selfadjoint matrix.
Call the function compute() to compute the tridiagonal decomposition of a given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) constructor which computes the tridiagonal Schur decomposition at construction time. Once the decomposition is computed, you can use the matrixQ() and matrixT() functions to retrieve the matrices Q and T in the decomposition.
The documentation of Tridiagonalization(const MatrixType&) contains an example of the typical use of this class.
Public Types | |
typedef HouseholderSequence< MatrixType, internal::remove_all_t< typename CoeffVectorType::ConjugateReturnType > > | HouseholderSequenceType |
Return type of matrixQ() | |
typedef Eigen::Index | Index |
typedef MatrixType_ | MatrixType |
Synonym for the template parameter MatrixType_ . | |
Public Member Functions | |
template<typename InputType > | |
Tridiagonalization & | compute (const EigenBase< InputType > &matrix) |
Computes tridiagonal decomposition of given matrix. | |
DiagonalReturnType | diagonal () const |
Returns the diagonal of the tridiagonal matrix T in the decomposition. | |
CoeffVectorType | householderCoefficients () const |
Returns the Householder coefficients. | |
HouseholderSequenceType | matrixQ () const |
Returns the unitary matrix Q in the decomposition. | |
MatrixTReturnType | matrixT () const |
Returns an expression of the tridiagonal matrix T in the decomposition. | |
const MatrixType & | packedMatrix () const |
Returns the internal representation of the decomposition. | |
SubDiagonalReturnType | subDiagonal () const |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition. | |
template<typename InputType > | |
Tridiagonalization (const EigenBase< InputType > &matrix) | |
Constructor; computes tridiagonal decomposition of given matrix. | |
Tridiagonalization (Index size=Size==Dynamic ? 2 :Size) | |
Default constructor. | |
typedef Eigen::Index Eigen::Tridiagonalization< MatrixType_ >::Index |
|
inlineexplicit |
Default constructor.
[in] | size | Positive integer, size of the matrix whose tridiagonal decomposition will be computed. |
The default constructor is useful in cases in which the user intends to perform decompositions via compute(). The size
parameter is only used as a hint. It is not an error to give a wrong size
, but it may impair performance.
|
inlineexplicit |
Constructor; computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
This constructor calls compute() to compute the tridiagonal decomposition.
Example:
Output:
|
inline |
Computes tridiagonal decomposition of given matrix.
[in] | matrix | Selfadjoint matrix whose tridiagonal decomposition is to be computed. |
*this
The tridiagonal decomposition is computed by bringing the columns of the matrix successively in the required form using Householder reflections. The cost is \( 4n^3/3 \) flops, where \( n \) denotes the size of the given matrix.
This method reuses of the allocated data in the Tridiagonalization object, if the size of the matrix does not change.
Example:
Output:
Tridiagonalization< MatrixType >::DiagonalReturnType Eigen::Tridiagonalization< MatrixType >::diagonal | ( | ) | const |
Returns the diagonal of the tridiagonal matrix T in the decomposition.
Example:
Output:
|
inline |
Returns the Householder coefficients.
The Householder coefficients allow the reconstruction of the matrix \( Q \) in the tridiagonal decomposition from the packed data.
Example:
Output:
|
inline |
Returns the unitary matrix Q in the decomposition.
This function returns a light-weight object of template class HouseholderSequence. You can either apply it directly to a matrix or you can convert it to a matrix of type MatrixType.
|
inline |
Returns an expression of the tridiagonal matrix T in the decomposition.
Currently, this function can be used to extract the matrix T from internal data and copy it to a dense matrix object. In most cases, it may be sufficient to directly use the packed matrix or the vector expressions returned by diagonal() and subDiagonal() instead of creating a new dense copy matrix with this function.
|
inline |
Returns the internal representation of the decomposition.
The returned matrix contains the following information:
See LAPACK for further details on this packed storage.
Example:
Output:
Tridiagonalization< MatrixType >::SubDiagonalReturnType Eigen::Tridiagonalization< MatrixType >::subDiagonal | ( | ) | const |
Returns the subdiagonal of the tridiagonal matrix T in the decomposition.