Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
Eigen::JacobiRotation< Scalar > Class Template Reference

Detailed Description

template<typename Scalar>
class Eigen::JacobiRotation< Scalar >

Rotation given by a cosine-sine pair.

This is defined in the Jacobi module.

#include <Eigen/Jacobi>

This class represents a Jacobi or Givens rotation. This is a 2D rotation in the plane J of angle \( \theta \) defined by its cosine c and sine s as follow: \( J = \left ( \begin{array}{cc} c & \overline s \\ -s & \overline c \end{array} \right ) \)

You can apply the respective counter-clockwise rotation to a column vector v by applying its adjoint on the left: \( v = J^* v \) that translates to the following Eigen code:

v.applyOnTheLeft(J.adjoint());
See also
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

Public Member Functions

JacobiRotation adjoint () const
 
 JacobiRotation ()
 
 JacobiRotation (const Scalar &c, const Scalar &s)
 
void makeGivens (const Scalar &p, const Scalar &q, Scalar *r=0)
 
template<typename Derived >
bool makeJacobi (const MatrixBase< Derived > &, Index p, Index q)
 
bool makeJacobi (const RealScalar &x, const Scalar &y, const RealScalar &z)
 
JacobiRotation operator* (const JacobiRotation &other)
 
JacobiRotation transpose () const
 

Constructor & Destructor Documentation

◆ JacobiRotation() [1/2]

template<typename Scalar >
Eigen::JacobiRotation< Scalar >::JacobiRotation ( )
inline

Default constructor without any initialization.

◆ JacobiRotation() [2/2]

template<typename Scalar >
Eigen::JacobiRotation< Scalar >::JacobiRotation ( const Scalar & c,
const Scalar & s )
inline

Construct a planar rotation from a cosine-sine pair (c, s).

Member Function Documentation

◆ adjoint()

template<typename Scalar >
JacobiRotation Eigen::JacobiRotation< Scalar >::adjoint ( ) const
inline

Returns the adjoint transformation

◆ makeGivens()

template<typename Scalar >
void Eigen::JacobiRotation< Scalar >::makeGivens ( const Scalar & p,
const Scalar & q,
Scalar * r = 0 )

Makes *this as a Givens rotation G such that applying \( G^* \) to the left of the vector \( V = \left ( \begin{array}{c} p \\ q \end{array} \right )\) yields: \( G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\).

The value of r is returned if r is not null (the default is null). Also note that G is built such that the cosine is always real.

Example:

Vector2f v = Vector2f::Random();
G.makeGivens(v.x(), v.y());
cout << "Here is the vector v:" << endl << v << endl;
v.applyOnTheLeft(0, 1, G.adjoint());
cout << "Here is the vector J' * v:" << endl << v << endl;
EIGEN_CONSTEXPR Scalar & x()
Definition DenseCoeffsBase.h:372
EIGEN_CONSTEXPR Scalar & y()
Definition DenseCoeffsBase.h:376
Rotation given by a cosine-sine pair.
Definition Jacobi.h:38
JacobiRotation adjoint() const
Definition Jacobi.h:67
void makeGivens(const Scalar &p, const Scalar &q, Scalar *r=0)
Definition Jacobi.h:152
void applyOnTheLeft(const EigenBase< OtherDerived > &other)
Definition MatrixBase.h:532
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186

Output:

This function implements the continuous Givens rotation generation algorithm found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem. LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.

See also
MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

◆ makeJacobi() [1/2]

template<typename Scalar >
template<typename Derived >
bool Eigen::JacobiRotation< Scalar >::makeJacobi ( const MatrixBase< Derived > & m,
Index p,
Index q )
inline

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the 2x2 selfadjoint matrix \( B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)

Example:

Matrix2f m = Matrix2f::Random();
m = (m + m.adjoint()).eval();
J.makeJacobi(m, 0, 1);
cout << "Here is the matrix m:" << endl << m << endl;
m.applyOnTheLeft(0, 1, J.adjoint());
m.applyOnTheRight(0, 1, J);
cout << "Here is the matrix J' * m * J:" << endl << m << endl;
bool makeJacobi(const MatrixBase< Derived > &, Index p, Index q)
Definition Jacobi.h:131
void applyOnTheRight(const EigenBase< OtherDerived > &other)
Definition MatrixBase.h:521
const AdjointReturnType adjoint() const
Definition Transpose.h:195

Output:

See also
JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

◆ makeJacobi() [2/2]

template<typename Scalar >
bool Eigen::JacobiRotation< Scalar >::makeJacobi ( const RealScalar & x,
const Scalar & y,
const RealScalar & z )

Makes *this as a Jacobi rotation J such that applying J on both the right and left sides of the selfadjoint 2x2 matrix \( B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\) yields a diagonal matrix \( A = J^* B J \)

See also
MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()

◆ operator*()

template<typename Scalar >
JacobiRotation Eigen::JacobiRotation< Scalar >::operator* ( const JacobiRotation< Scalar > & other)
inline

Concatenates two planar rotation

◆ transpose()

template<typename Scalar >
JacobiRotation Eigen::JacobiRotation< Scalar >::transpose ( ) const
inline

Returns the transposed transformation


The documentation for this class was generated from the following file: