template<typename Scalar_>
class Eigen::AngleAxis< Scalar_ >
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
This is defined in the Geometry module.
#include <Eigen/Geometry>
- Parameters
-
Scalar_ | the scalar type, i.e., the type of the coefficients. |
- Warning
- When setting up an AngleAxis object, the axis vector must be normalized.
The following two typedefs are provided for convenience:
AngleAxisf
for float
AngleAxisd
for double
Combined with MatrixBase::Unit{X,Y,Z}, AngleAxis can be used to easily mimic Euler-angles. Here is an example:
cout << m << endl <<
"is unitary: " << m.
isUnitary() << endl;
Represents a 3D rotation as a rotation angle around an arbitrary 3D axis.
Definition AngleAxis.h:52
bool isUnitary(const RealScalar &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Dot.h:277
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Output:
- Note
- This class is not aimed to be used to store a rotation transformation, but rather to make easier the creation of other rotation (Quaternion, rotation Matrix) and transformation objects.
- See also
- class Quaternion, class Transform, MatrixBase::UnitX()
|
Scalar & | angle () |
|
Scalar | angle () const |
|
| AngleAxis () |
|
template<typename OtherScalarType > |
| AngleAxis (const AngleAxis< OtherScalarType > &other) |
|
template<typename Derived > |
| AngleAxis (const MatrixBase< Derived > &m) |
|
template<typename QuatDerived > |
| AngleAxis (const QuaternionBase< QuatDerived > &q) |
|
template<typename Derived > |
| AngleAxis (const Scalar &angle, const MatrixBase< Derived > &axis) |
|
Vector3 & | axis () |
|
const Vector3 & | axis () const |
|
template<typename NewScalarType > |
internal::cast_return_type< AngleAxis, AngleAxis< NewScalarType > >::type | cast () const |
|
template<typename Derived > |
AngleAxis< Scalar > & | fromRotationMatrix (const MatrixBase< Derived > &mat) |
| Sets *this from a 3x3 rotation matrix.
|
|
AngleAxis | inverse () const |
|
bool | isApprox (const AngleAxis &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const |
|
QuaternionType | operator* (const AngleAxis &other) const |
|
QuaternionType | operator* (const QuaternionType &other) const |
|
template<typename Derived > |
AngleAxis< Scalar > & | operator= (const MatrixBase< Derived > &mat) |
|
template<typename QuatDerived > |
AngleAxis< Scalar > & | operator= (const QuaternionBase< QuatDerived > &q) |
|
Matrix3 | toRotationMatrix (void) const |
|
AngleAxis< Scalar_ > | inverse () const |
|
RotationMatrixType | matrix () const |
|
internal::rotation_base_generic_product_selector< AngleAxis< Scalar_ >, OtherDerived, OtherDerived::IsVectorAtCompileTime >::ReturnType | operator* (const EigenBase< OtherDerived > &e) const |
|
Transform< Scalar, Dim, Mode > | operator* (const Transform< Scalar, Dim, Mode, Options > &t) const |
|
Transform< Scalar, Dim, Isometry > | operator* (const Translation< Scalar, Dim > &t) const |
|
RotationMatrixType | operator* (const UniformScaling< Scalar > &s) const |
|
RotationMatrixType | toRotationMatrix () const |
|
template<typename Scalar_ >
template<typename QuatDerived >
Set *this
from a unit quaternion.
The resulting axis is normalized, and the computed angle is in the [0,pi] range.
This function implicitly normalizes the quaternion q.