Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
SelfAdjointEigenSolver.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008-2010 Gael Guennebaud <[email protected]>
5// Copyright (C) 2010 Jitse Niesen <[email protected]>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_SELFADJOINTEIGENSOLVER_H
12#define EIGEN_SELFADJOINTEIGENSOLVER_H
13
14#include "./Tridiagonalization.h"
15
16// IWYU pragma: private
17#include "./InternalHeaderCheck.h"
18
19namespace Eigen {
20
21template <typename MatrixType_>
23
24namespace internal {
25template <typename SolverType, int Size, bool IsComplex>
26struct direct_selfadjoint_eigenvalues;
27
28template <typename MatrixType, typename DiagType, typename SubDiagType>
29EIGEN_DEVICE_FUNC ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag,
30 const Index maxIterations, bool computeEigenvectors,
31 MatrixType& eivec);
32} // namespace internal
33
81template <typename MatrixType_>
83 public:
84 typedef MatrixType_ MatrixType;
85 enum {
86 Size = MatrixType::RowsAtCompileTime,
87 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
88 Options = internal::traits<MatrixType>::Options,
89 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
90 };
91
93 typedef typename MatrixType::Scalar Scalar;
95
97
104 typedef typename NumTraits<Scalar>::Real RealScalar;
105
106 friend struct internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver, Size, NumTraits<Scalar>::IsComplex>;
107
113 typedef typename internal::plain_col_type<MatrixType, Scalar>::type VectorType;
114 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
115 typedef Tridiagonalization<MatrixType> TridiagonalizationType;
117
128 EIGEN_DEVICE_FUNC SelfAdjointEigenSolver()
129 : m_eivec(),
130 m_workspace(),
131 m_eivalues(),
132 m_subdiag(),
133 m_hcoeffs(),
134 m_info(InvalidInput),
135 m_isInitialized(false),
136 m_eigenvectorsOk(false) {}
137
150 EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolver(Index size)
151 : m_eivec(size, size),
152 m_workspace(size),
153 m_eivalues(size),
154 m_subdiag(size > 1 ? size - 1 : 1),
155 m_hcoeffs(size > 1 ? size - 1 : 1),
156 m_isInitialized(false),
157 m_eigenvectorsOk(false) {}
158
174 template <typename InputType>
175 EIGEN_DEVICE_FUNC explicit SelfAdjointEigenSolver(const EigenBase<InputType>& matrix,
176 int options = ComputeEigenvectors)
177 : m_eivec(matrix.rows(), matrix.cols()),
178 m_workspace(matrix.cols()),
179 m_eivalues(matrix.cols()),
180 m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
181 m_hcoeffs(matrix.cols() > 1 ? matrix.cols() - 1 : 1),
182 m_isInitialized(false),
183 m_eigenvectorsOk(false) {
184 compute(matrix.derived(), options);
185 }
186
217 template <typename InputType>
218 EIGEN_DEVICE_FUNC SelfAdjointEigenSolver& compute(const EigenBase<InputType>& matrix,
219 int options = ComputeEigenvectors);
220
239 EIGEN_DEVICE_FUNC SelfAdjointEigenSolver& computeDirect(const MatrixType& matrix, int options = ComputeEigenvectors);
240
253 SelfAdjointEigenSolver& computeFromTridiagonal(const RealVectorType& diag, const SubDiagonalType& subdiag,
254 int options = ComputeEigenvectors);
255
279 EIGEN_DEVICE_FUNC const EigenvectorsType& eigenvectors() const {
280 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
281 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
282 return m_eivec;
283 }
284
300 EIGEN_DEVICE_FUNC const RealVectorType& eigenvalues() const {
301 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
302 return m_eivalues;
303 }
304
322 EIGEN_DEVICE_FUNC MatrixType operatorSqrt() const {
323 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
324 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
325 return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
326 }
327
346 EIGEN_DEVICE_FUNC MatrixType operatorInverseSqrt() const {
347 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
348 eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
349 return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
350 }
351
356 EIGEN_DEVICE_FUNC ComputationInfo info() const {
357 eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
358 return m_info;
359 }
360
366 static const int m_maxIterations = 30;
367
368 protected:
369 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
370
371 EigenvectorsType m_eivec;
372 VectorType m_workspace;
373 RealVectorType m_eivalues;
376 ComputationInfo m_info;
377 bool m_isInitialized;
378 bool m_eigenvectorsOk;
379};
380
381namespace internal {
402template <int StorageOrder, typename RealScalar, typename Scalar, typename Index>
403EIGEN_DEVICE_FUNC static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end,
404 Scalar* matrixQ, Index n);
405} // namespace internal
406
407template <typename MatrixType>
408template <typename InputType>
409EIGEN_DEVICE_FUNC SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
410 const EigenBase<InputType>& a_matrix, int options) {
411 const InputType& matrix(a_matrix.derived());
412
413 EIGEN_USING_STD(abs);
414 eigen_assert(matrix.cols() == matrix.rows());
415 eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask &&
416 "invalid option parameter");
417 bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors;
418 Index n = matrix.cols();
419 m_eivalues.resize(n, 1);
420
421 if (n == 1) {
422 m_eivec = matrix;
423 m_eivalues.coeffRef(0, 0) = numext::real(m_eivec.coeff(0, 0));
424 if (computeEigenvectors) m_eivec.setOnes(n, n);
425 m_info = Success;
426 m_isInitialized = true;
427 m_eigenvectorsOk = computeEigenvectors;
428 return *this;
429 }
430
431 // declare some aliases
432 RealVectorType& diag = m_eivalues;
433 EigenvectorsType& mat = m_eivec;
434
435 // map the matrix coefficients to [-1:1] to avoid over- and underflow.
436 mat = matrix.template triangularView<Lower>();
437 RealScalar scale = mat.cwiseAbs().maxCoeff();
438 if (numext::is_exactly_zero(scale)) scale = RealScalar(1);
439 mat.template triangularView<Lower>() /= scale;
440 m_subdiag.resize(n - 1);
441 m_hcoeffs.resize(n - 1);
442 internal::tridiagonalization_inplace(mat, diag, m_subdiag, m_hcoeffs, m_workspace, computeEigenvectors);
443
444 m_info = internal::computeFromTridiagonal_impl(diag, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
445
446 // scale back the eigen values
447 m_eivalues *= scale;
448
449 m_isInitialized = true;
450 m_eigenvectorsOk = computeEigenvectors;
451 return *this;
452}
453
454template <typename MatrixType>
456 const RealVectorType& diag, const SubDiagonalType& subdiag, int options) {
457 // TODO : Add an option to scale the values beforehand
458 bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors;
459
460 m_eivalues = diag;
461 m_subdiag = subdiag;
462 if (computeEigenvectors) {
463 m_eivec.setIdentity(diag.size(), diag.size());
464 }
465 m_info = internal::computeFromTridiagonal_impl(m_eivalues, m_subdiag, m_maxIterations, computeEigenvectors, m_eivec);
466
467 m_isInitialized = true;
468 m_eigenvectorsOk = computeEigenvectors;
469 return *this;
470}
471
472namespace internal {
484template <typename MatrixType, typename DiagType, typename SubDiagType>
485EIGEN_DEVICE_FUNC ComputationInfo computeFromTridiagonal_impl(DiagType& diag, SubDiagType& subdiag,
486 const Index maxIterations, bool computeEigenvectors,
487 MatrixType& eivec) {
488 ComputationInfo info;
489 typedef typename MatrixType::Scalar Scalar;
490
491 Index n = diag.size();
492 Index end = n - 1;
493 Index start = 0;
494 Index iter = 0; // total number of iterations
495
496 typedef typename DiagType::RealScalar RealScalar;
497 const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)();
498 const RealScalar precision_inv = RealScalar(1) / NumTraits<RealScalar>::epsilon();
499 while (end > 0) {
500 for (Index i = start; i < end; ++i) {
501 if (numext::abs(subdiag[i]) < considerAsZero) {
502 subdiag[i] = RealScalar(0);
503 } else {
504 // abs(subdiag[i]) <= epsilon * sqrt(abs(diag[i]) + abs(diag[i+1]))
505 // Scaled to prevent underflows.
506 const RealScalar scaled_subdiag = precision_inv * subdiag[i];
507 if (scaled_subdiag * scaled_subdiag <= (numext::abs(diag[i]) + numext::abs(diag[i + 1]))) {
508 subdiag[i] = RealScalar(0);
509 }
510 }
511 }
512
513 // find the largest unreduced block at the end of the matrix.
514 while (end > 0 && numext::is_exactly_zero(subdiag[end - 1])) {
515 end--;
516 }
517 if (end <= 0) break;
518
519 // if we spent too many iterations, we give up
520 iter++;
521 if (iter > maxIterations * n) break;
522
523 start = end - 1;
524 while (start > 0 && !numext::is_exactly_zero(subdiag[start - 1])) start--;
525
526 internal::tridiagonal_qr_step<MatrixType::Flags & RowMajorBit ? RowMajor : ColMajor>(
527 diag.data(), subdiag.data(), start, end, computeEigenvectors ? eivec.data() : (Scalar*)0, n);
528 }
529 if (iter <= maxIterations * n)
530 info = Success;
531 else
532 info = NoConvergence;
533
534 // Sort eigenvalues and corresponding vectors.
535 // TODO make the sort optional ?
536 // TODO use a better sort algorithm !!
537 if (info == Success) {
538 for (Index i = 0; i < n - 1; ++i) {
539 Index k;
540 diag.segment(i, n - i).minCoeff(&k);
541 if (k > 0) {
542 numext::swap(diag[i], diag[k + i]);
543 if (computeEigenvectors) eivec.col(i).swap(eivec.col(k + i));
544 }
545 }
546 }
547 return info;
548}
549
550template <typename SolverType, int Size, bool IsComplex>
551struct direct_selfadjoint_eigenvalues {
552 EIGEN_DEVICE_FUNC static inline void run(SolverType& eig, const typename SolverType::MatrixType& A, int options) {
553 eig.compute(A, options);
554 }
555};
556
557template <typename SolverType>
558struct direct_selfadjoint_eigenvalues<SolverType, 3, false> {
559 typedef typename SolverType::MatrixType MatrixType;
560 typedef typename SolverType::RealVectorType VectorType;
561 typedef typename SolverType::Scalar Scalar;
562 typedef typename SolverType::EigenvectorsType EigenvectorsType;
563
568 EIGEN_DEVICE_FUNC static inline void computeRoots(const MatrixType& m, VectorType& roots) {
569 EIGEN_USING_STD(sqrt)
570 EIGEN_USING_STD(atan2)
571 EIGEN_USING_STD(cos)
572 EIGEN_USING_STD(sin)
573 const Scalar s_inv3 = Scalar(1) / Scalar(3);
574 const Scalar s_sqrt3 = sqrt(Scalar(3));
575
576 // The characteristic equation is x^3 - c2*x^2 + c1*x - c0 = 0. The
577 // eigenvalues are the roots to this equation, all guaranteed to be
578 // real-valued, because the matrix is symmetric.
579 Scalar c0 = m(0, 0) * m(1, 1) * m(2, 2) + Scalar(2) * m(1, 0) * m(2, 0) * m(2, 1) - m(0, 0) * m(2, 1) * m(2, 1) -
580 m(1, 1) * m(2, 0) * m(2, 0) - m(2, 2) * m(1, 0) * m(1, 0);
581 Scalar c1 = m(0, 0) * m(1, 1) - m(1, 0) * m(1, 0) + m(0, 0) * m(2, 2) - m(2, 0) * m(2, 0) + m(1, 1) * m(2, 2) -
582 m(2, 1) * m(2, 1);
583 Scalar c2 = m(0, 0) + m(1, 1) + m(2, 2);
584
585 // Construct the parameters used in classifying the roots of the equation
586 // and in solving the equation for the roots in closed form.
587 Scalar c2_over_3 = c2 * s_inv3;
588 Scalar a_over_3 = (c2 * c2_over_3 - c1) * s_inv3;
589 a_over_3 = numext::maxi(a_over_3, Scalar(0));
590
591 Scalar half_b = Scalar(0.5) * (c0 + c2_over_3 * (Scalar(2) * c2_over_3 * c2_over_3 - c1));
592
593 Scalar q = a_over_3 * a_over_3 * a_over_3 - half_b * half_b;
594 q = numext::maxi(q, Scalar(0));
595
596 // Compute the eigenvalues by solving for the roots of the polynomial.
597 Scalar rho = sqrt(a_over_3);
598 Scalar theta = atan2(sqrt(q), half_b) * s_inv3; // since sqrt(q) > 0, atan2 is in [0, pi] and theta is in [0, pi/3]
599 Scalar cos_theta = cos(theta);
600 Scalar sin_theta = sin(theta);
601 // roots are already sorted, since cos is monotonically decreasing on [0, pi]
602 roots(0) = c2_over_3 - rho * (cos_theta + s_sqrt3 * sin_theta); // == 2*rho*cos(theta+2pi/3)
603 roots(1) = c2_over_3 - rho * (cos_theta - s_sqrt3 * sin_theta); // == 2*rho*cos(theta+ pi/3)
604 roots(2) = c2_over_3 + Scalar(2) * rho * cos_theta;
605 }
606
607 EIGEN_DEVICE_FUNC static inline bool extract_kernel(MatrixType& mat, Ref<VectorType> res,
608 Ref<VectorType> representative) {
609 EIGEN_USING_STD(abs);
610 EIGEN_USING_STD(sqrt);
611 Index i0;
612 // Find non-zero column i0 (by construction, there must exist a non zero coefficient on the diagonal):
613 mat.diagonal().cwiseAbs().maxCoeff(&i0);
614 // mat.col(i0) is a good candidate for an orthogonal vector to the current eigenvector,
615 // so let's save it:
616 representative = mat.col(i0);
617 Scalar n0, n1;
618 VectorType c0, c1;
619 n0 = (c0 = representative.cross(mat.col((i0 + 1) % 3))).squaredNorm();
620 n1 = (c1 = representative.cross(mat.col((i0 + 2) % 3))).squaredNorm();
621 if (n0 > n1)
622 res = c0 / sqrt(n0);
623 else
624 res = c1 / sqrt(n1);
625
626 return true;
627 }
628
629 EIGEN_DEVICE_FUNC static inline void run(SolverType& solver, const MatrixType& mat, int options) {
630 eigen_assert(mat.cols() == 3 && mat.cols() == mat.rows());
631 eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask &&
632 "invalid option parameter");
633 bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors;
634
635 EigenvectorsType& eivecs = solver.m_eivec;
636 VectorType& eivals = solver.m_eivalues;
637
638 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
639 Scalar shift = mat.trace() / Scalar(3);
640 // TODO Avoid this copy. Currently it is necessary to suppress bogus values when determining maxCoeff and for
641 // computing the eigenvectors later
642 MatrixType scaledMat = mat.template selfadjointView<Lower>();
643 scaledMat.diagonal().array() -= shift;
644 Scalar scale = scaledMat.cwiseAbs().maxCoeff();
645 if (scale > 0) scaledMat /= scale; // TODO for scale==0 we could save the remaining operations
646
647 // compute the eigenvalues
648 computeRoots(scaledMat, eivals);
649
650 // compute the eigenvectors
651 if (computeEigenvectors) {
652 if ((eivals(2) - eivals(0)) <= Eigen::NumTraits<Scalar>::epsilon()) {
653 // All three eigenvalues are numerically the same
654 eivecs.setIdentity();
655 } else {
656 MatrixType tmp;
657 tmp = scaledMat;
658
659 // Compute the eigenvector of the most distinct eigenvalue
660 Scalar d0 = eivals(2) - eivals(1);
661 Scalar d1 = eivals(1) - eivals(0);
662 Index k(0), l(2);
663 if (d0 > d1) {
664 numext::swap(k, l);
665 d0 = d1;
666 }
667
668 // Compute the eigenvector of index k
669 {
670 tmp.diagonal().array() -= eivals(k);
671 // By construction, 'tmp' is of rank 2, and its kernel corresponds to the respective eigenvector.
672 extract_kernel(tmp, eivecs.col(k), eivecs.col(l));
673 }
674
675 // Compute eigenvector of index l
676 if (d0 <= 2 * Eigen::NumTraits<Scalar>::epsilon() * d1) {
677 // If d0 is too small, then the two other eigenvalues are numerically the same,
678 // and thus we only have to ortho-normalize the near orthogonal vector we saved above.
679 eivecs.col(l) -= eivecs.col(k).dot(eivecs.col(l)) * eivecs.col(l);
680 eivecs.col(l).normalize();
681 } else {
682 tmp = scaledMat;
683 tmp.diagonal().array() -= eivals(l);
684
685 VectorType dummy;
686 extract_kernel(tmp, eivecs.col(l), dummy);
687 }
688
689 // Compute last eigenvector from the other two
690 eivecs.col(1) = eivecs.col(2).cross(eivecs.col(0)).normalized();
691 }
692 }
693
694 // Rescale back to the original size.
695 eivals *= scale;
696 eivals.array() += shift;
697
698 solver.m_info = Success;
699 solver.m_isInitialized = true;
700 solver.m_eigenvectorsOk = computeEigenvectors;
701 }
702};
703
704// 2x2 direct eigenvalues decomposition, code from Hauke Heibel
705template <typename SolverType>
706struct direct_selfadjoint_eigenvalues<SolverType, 2, false> {
707 typedef typename SolverType::MatrixType MatrixType;
708 typedef typename SolverType::RealVectorType VectorType;
709 typedef typename SolverType::Scalar Scalar;
710 typedef typename SolverType::EigenvectorsType EigenvectorsType;
711
712 EIGEN_DEVICE_FUNC static inline void computeRoots(const MatrixType& m, VectorType& roots) {
713 EIGEN_USING_STD(sqrt);
714 const Scalar t0 = Scalar(0.5) * sqrt(numext::abs2(m(0, 0) - m(1, 1)) + Scalar(4) * numext::abs2(m(1, 0)));
715 const Scalar t1 = Scalar(0.5) * (m(0, 0) + m(1, 1));
716 roots(0) = t1 - t0;
717 roots(1) = t1 + t0;
718 }
719
720 EIGEN_DEVICE_FUNC static inline void run(SolverType& solver, const MatrixType& mat, int options) {
721 EIGEN_USING_STD(sqrt);
722 EIGEN_USING_STD(abs);
723
724 eigen_assert(mat.cols() == 2 && mat.cols() == mat.rows());
725 eigen_assert((options & ~(EigVecMask | GenEigMask)) == 0 && (options & EigVecMask) != EigVecMask &&
726 "invalid option parameter");
727 bool computeEigenvectors = (options & ComputeEigenvectors) == ComputeEigenvectors;
728
729 EigenvectorsType& eivecs = solver.m_eivec;
730 VectorType& eivals = solver.m_eivalues;
731
732 // Shift the matrix to the mean eigenvalue and map the matrix coefficients to [-1:1] to avoid over- and underflow.
733 Scalar shift = mat.trace() / Scalar(2);
734 MatrixType scaledMat = mat;
735 scaledMat.coeffRef(0, 1) = mat.coeff(1, 0);
736 scaledMat.diagonal().array() -= shift;
737 Scalar scale = scaledMat.cwiseAbs().maxCoeff();
738 if (scale > Scalar(0)) scaledMat /= scale;
739
740 // Compute the eigenvalues
741 computeRoots(scaledMat, eivals);
742
743 // compute the eigen vectors
744 if (computeEigenvectors) {
745 if ((eivals(1) - eivals(0)) <= abs(eivals(1)) * Eigen::NumTraits<Scalar>::epsilon()) {
746 eivecs.setIdentity();
747 } else {
748 scaledMat.diagonal().array() -= eivals(1);
749 Scalar a2 = numext::abs2(scaledMat(0, 0));
750 Scalar c2 = numext::abs2(scaledMat(1, 1));
751 Scalar b2 = numext::abs2(scaledMat(1, 0));
752 if (a2 > c2) {
753 eivecs.col(1) << -scaledMat(1, 0), scaledMat(0, 0);
754 eivecs.col(1) /= sqrt(a2 + b2);
755 } else {
756 eivecs.col(1) << -scaledMat(1, 1), scaledMat(1, 0);
757 eivecs.col(1) /= sqrt(c2 + b2);
758 }
759
760 eivecs.col(0) << eivecs.col(1).unitOrthogonal();
761 }
762 }
763
764 // Rescale back to the original size.
765 eivals *= scale;
766 eivals.array() += shift;
767
768 solver.m_info = Success;
769 solver.m_isInitialized = true;
770 solver.m_eigenvectorsOk = computeEigenvectors;
771 }
772};
773
774} // namespace internal
775
776template <typename MatrixType>
778 const MatrixType& matrix, int options) {
779 internal::direct_selfadjoint_eigenvalues<SelfAdjointEigenSolver, Size, NumTraits<Scalar>::IsComplex>::run(
780 *this, matrix, options);
781 return *this;
782}
783
784namespace internal {
785
786// Francis implicit QR step.
787template <int StorageOrder, typename RealScalar, typename Scalar, typename Index>
788EIGEN_DEVICE_FUNC static void tridiagonal_qr_step(RealScalar* diag, RealScalar* subdiag, Index start, Index end,
789 Scalar* matrixQ, Index n) {
790 // Wilkinson Shift.
791 RealScalar td = (diag[end - 1] - diag[end]) * RealScalar(0.5);
792 RealScalar e = subdiag[end - 1];
793 // Note that thanks to scaling, e^2 or td^2 cannot overflow, however they can still
794 // underflow thus leading to inf/NaN values when using the following commented code:
795 // RealScalar e2 = numext::abs2(subdiag[end-1]);
796 // RealScalar mu = diag[end] - e2 / (td + (td>0 ? 1 : -1) * sqrt(td*td + e2));
797 // This explain the following, somewhat more complicated, version:
798 RealScalar mu = diag[end];
799 if (numext::is_exactly_zero(td)) {
800 mu -= numext::abs(e);
801 } else if (!numext::is_exactly_zero(e)) {
802 const RealScalar e2 = numext::abs2(e);
803 const RealScalar h = numext::hypot(td, e);
804 if (numext::is_exactly_zero(e2)) {
805 mu -= e / ((td + (td > RealScalar(0) ? h : -h)) / e);
806 } else {
807 mu -= e2 / (td + (td > RealScalar(0) ? h : -h));
808 }
809 }
810
811 RealScalar x = diag[start] - mu;
812 RealScalar z = subdiag[start];
813 // If z ever becomes zero, the Givens rotation will be the identity and
814 // z will stay zero for all future iterations.
815 for (Index k = start; k < end && !numext::is_exactly_zero(z); ++k) {
816 JacobiRotation<RealScalar> rot;
817 rot.makeGivens(x, z);
818
819 // do T = G' T G
820 RealScalar sdk = rot.s() * diag[k] + rot.c() * subdiag[k];
821 RealScalar dkp1 = rot.s() * subdiag[k] + rot.c() * diag[k + 1];
822
823 diag[k] =
824 rot.c() * (rot.c() * diag[k] - rot.s() * subdiag[k]) - rot.s() * (rot.c() * subdiag[k] - rot.s() * diag[k + 1]);
825 diag[k + 1] = rot.s() * sdk + rot.c() * dkp1;
826 subdiag[k] = rot.c() * sdk - rot.s() * dkp1;
827
828 if (k > start) subdiag[k - 1] = rot.c() * subdiag[k - 1] - rot.s() * z;
829
830 // "Chasing the bulge" to return to triangular form.
831 x = subdiag[k];
832 if (k < end - 1) {
833 z = -rot.s() * subdiag[k + 1];
834 subdiag[k + 1] = rot.c() * subdiag[k + 1];
835 }
836
837 // apply the givens rotation to the unit matrix Q = Q * G
838 if (matrixQ) {
839 // FIXME if StorageOrder == RowMajor this operation is not very efficient
840 Map<Matrix<Scalar, Dynamic, Dynamic, StorageOrder> > q(matrixQ, n, n);
841 q.applyOnTheRight(k, k + 1, rot);
842 }
843 }
844}
845
846} // end namespace internal
847
848} // end namespace Eigen
849
850#endif // EIGEN_SELFADJOINTEIGENSOLVER_H
Computes eigenvalues and eigenvectors of the generalized selfadjoint eigen problem.
Definition SelfAdjointEigenSolver.h:22
Derived & setIdentity()
Definition CwiseNullaryOp.h:839
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Computes eigenvalues and eigenvectors of selfadjoint matrices.
Definition SelfAdjointEigenSolver.h:82
SelfAdjointEigenSolver & compute(const EigenBase< InputType > &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix.
SelfAdjointEigenSolver & computeFromTridiagonal(const RealVectorType &diag, const SubDiagonalType &subdiag, int options=ComputeEigenvectors)
Computes the eigen decomposition from a tridiagonal symmetric matrix.
Definition SelfAdjointEigenSolver.h:455
NumTraits< Scalar >::Real RealScalar
Real scalar type for MatrixType_.
Definition SelfAdjointEigenSolver.h:104
MatrixType operatorInverseSqrt() const
Computes the inverse square root of the matrix.
Definition SelfAdjointEigenSolver.h:346
internal::plain_col_type< MatrixType, Scalar >::type VectorType
Type for vector of eigenvalues as returned by eigenvalues().
Definition SelfAdjointEigenSolver.h:113
ComputationInfo info() const
Reports whether previous computation was successful.
Definition SelfAdjointEigenSolver.h:356
Eigen::Index Index
Definition SelfAdjointEigenSolver.h:94
MatrixType::Scalar Scalar
Scalar type for matrices of type MatrixType_.
Definition SelfAdjointEigenSolver.h:93
MatrixType operatorSqrt() const
Computes the positive-definite square root of the matrix.
Definition SelfAdjointEigenSolver.h:322
SelfAdjointEigenSolver(Index size)
Constructor, pre-allocates memory for dynamic-size matrices.
Definition SelfAdjointEigenSolver.h:150
const RealVectorType & eigenvalues() const
Returns the eigenvalues of given matrix.
Definition SelfAdjointEigenSolver.h:300
static const int m_maxIterations
Maximum number of iterations.
Definition SelfAdjointEigenSolver.h:366
const EigenvectorsType & eigenvectors() const
Returns the eigenvectors of given matrix.
Definition SelfAdjointEigenSolver.h:279
SelfAdjointEigenSolver(const EigenBase< InputType > &matrix, int options=ComputeEigenvectors)
Constructor; computes eigendecomposition of given matrix.
Definition SelfAdjointEigenSolver.h:175
SelfAdjointEigenSolver & computeDirect(const MatrixType &matrix, int options=ComputeEigenvectors)
Computes eigendecomposition of given matrix using a closed-form algorithm.
Definition SelfAdjointEigenSolver.h:777
Tridiagonal decomposition of a selfadjoint matrix.
Definition Tridiagonalization.h:66
ComputationInfo
Definition Constants.h:438
@ Success
Definition Constants.h:440
@ NoConvergence
Definition Constants.h:444
@ ComputeEigenvectors
Definition Constants.h:401
Namespace containing all symbols from the Eigen library.
Definition Core:137
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_cos_op< typename Derived::Scalar >, const Derived > cos(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_abs_op< typename Derived::Scalar >, const Derived > abs(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sin_op< typename Derived::Scalar >, const Derived > sin(const Eigen::ArrayBase< Derived > &x)
Definition EigenBase.h:33
Derived & derived()
Definition EigenBase.h:49
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition Meta.h:523