Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
Rotation2D.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <[email protected]>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_ROTATION2D_H
11#define EIGEN_ROTATION2D_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
35namespace internal {
36
37template <typename Scalar_>
38struct traits<Rotation2D<Scalar_> > {
39 typedef Scalar_ Scalar;
40};
41} // end namespace internal
42
43template <typename Scalar_>
44class Rotation2D : public RotationBase<Rotation2D<Scalar_>, 2> {
46
47 public:
48 using Base::operator*;
49
50 enum { Dim = 2 };
52 typedef Scalar_ Scalar;
55
56 protected:
57 Scalar m_angle;
58
59 public:
61 EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
62
64 EIGEN_DEVICE_FUNC Rotation2D() {}
65
70 template <typename Derived>
71 EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m) {
72 fromRotationMatrix(m.derived());
73 }
74
76 EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
77
79 EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
80
82 EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
83 Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI));
84 return tmp < Scalar(0) ? tmp + Scalar(2 * EIGEN_PI) : tmp;
85 }
86
88 EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
89 Scalar tmp = numext::fmod(m_angle, Scalar(2 * EIGEN_PI));
90 if (tmp > Scalar(EIGEN_PI))
91 tmp -= Scalar(2 * EIGEN_PI);
92 else if (tmp < -Scalar(EIGEN_PI))
93 tmp += Scalar(2 * EIGEN_PI);
94 return tmp;
95 }
96
98 EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
99
101 EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const {
102 return Rotation2D(m_angle + other.m_angle);
103 }
104
106 EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other) {
107 m_angle += other.m_angle;
108 return *this;
109 }
110
112 EIGEN_DEVICE_FUNC Vector2 operator*(const Vector2& vec) const { return toRotationMatrix() * vec; }
113
114 template <typename Derived>
115 EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
116 EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
117
125 template <typename Derived>
126 EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m) {
127 return fromRotationMatrix(m.derived());
128 }
129
133 EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const {
134 Scalar dist = Rotation2D(other.m_angle - m_angle).smallestAngle();
135 return Rotation2D(m_angle + dist * t);
136 }
137
143 template <typename NewScalarType>
144 EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type cast()
145 const {
146 return typename internal::cast_return_type<Rotation2D, Rotation2D<NewScalarType> >::type(*this);
147 }
148
150 template <typename OtherScalarType>
151 EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) {
152 m_angle = Scalar(other.angle());
153 }
154
155 EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
156
161 EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec =
163 return internal::isApprox(m_angle, other.m_angle, prec);
164 }
165};
166
173
178template <typename Scalar>
179template <typename Derived>
181 EIGEN_USING_STD(atan2)
182 EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime == 2 && Derived::ColsAtCompileTime == 2,
183 YOU_MADE_A_PROGRAMMING_MISTAKE)
184 m_angle = atan2(mat.coeff(1, 0), mat.coeff(0, 0));
185 return *this;
186}
187
190template <typename Scalar>
192 EIGEN_USING_STD(sin)
193 EIGEN_USING_STD(cos)
194 Scalar sinA = sin(m_angle);
195 Scalar cosA = cos(m_angle);
196 return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
197}
198
199} // end namespace Eigen
200
201#endif // EIGEN_ROTATION2D_H
Derived & derived()
Definition EigenBase.h:49
EIGEN_CONSTEXPR CoeffReturnType coeff(Index row, Index col) const
Definition DenseCoeffsBase.h:92
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Represents a rotation/orientation in a 2 dimensional space.
Definition Rotation2D.h:44
Rotation2D inverse() const
Definition Rotation2D.h:98
Scalar smallestPositiveAngle() const
Definition Rotation2D.h:82
Scalar smallestAngle() const
Definition Rotation2D.h:88
Rotation2D(const Scalar &a)
Definition Rotation2D.h:61
Rotation2D & operator=(const MatrixBase< Derived > &m)
Definition Rotation2D.h:126
Vector2 operator*(const Vector2 &vec) const
Definition Rotation2D.h:112
Scalar angle() const
Definition Rotation2D.h:76
Matrix2 toRotationMatrix() const
Definition Rotation2D.h:191
Rotation2D operator*(const Rotation2D &other) const
Definition Rotation2D.h:101
internal::cast_return_type< Rotation2D, Rotation2D< NewScalarType > >::type cast() const
Definition Rotation2D.h:144
Rotation2D(const Rotation2D< OtherScalarType > &other)
Definition Rotation2D.h:151
Rotation2D()
Definition Rotation2D.h:64
Rotation2D & operator*=(const Rotation2D &other)
Definition Rotation2D.h:106
Scalar & angle()
Definition Rotation2D.h:79
Rotation2D slerp(const Scalar &t, const Rotation2D &other) const
Definition Rotation2D.h:133
bool isApprox(const Rotation2D &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Rotation2D.h:161
Scalar_ Scalar
Definition Rotation2D.h:52
Rotation2D(const MatrixBase< Derived > &m)
Definition Rotation2D.h:71
Common base class for compact rotation representations.
Definition RotationBase.h:32
Namespace containing all symbols from the Eigen library.
Definition Core:137
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition Meta.h:523