164 RealQZ&
compute(
const MatrixType& A,
const MatrixType& B,
bool computeQZ =
true);
171 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
178 eigen_assert(m_isInitialized &&
"RealQZ is not initialized.");
179 return m_global_iter;
186 m_maxIters = maxIters;
191 MatrixType m_S, m_T, m_Q, m_Z;
195 bool m_isInitialized;
197 Scalar m_normOfT, m_normOfS;
205 void hessenbergTriangular();
209 void splitOffTwoRows(
Index i);
216template <
typename MatrixType>
217void RealQZ<MatrixType>::hessenbergTriangular() {
218 const Index dim = m_S.cols();
221 HouseholderQR<MatrixType> qrT(m_T);
222 m_T = qrT.matrixQR();
223 m_T.template triangularView<StrictlyLower>().setZero();
224 m_Q = qrT.householderQ();
226 m_S.applyOnTheLeft(m_Q.adjoint());
228 if (m_computeQZ) m_Z = MatrixType::Identity(dim, dim);
230 for (Index j = 0; j <= dim - 3; j++) {
231 for (Index i = dim - 1; i >= j + 2; i--) {
234 if (!numext::is_exactly_zero(m_S.coeff(i, j))) {
235 G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
236 m_S.coeffRef(i, j) = Scalar(0.0);
237 m_S.rightCols(dim - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
238 m_T.rightCols(dim - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
240 if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
243 if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
244 G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
245 m_T.coeffRef(i, i - 1) = Scalar(0.0);
246 m_S.applyOnTheRight(i, i - 1, G);
247 m_T.topRows(i).applyOnTheRight(i, i - 1, G);
249 if (m_computeQZ) m_Z.applyOnTheLeft(i, i - 1, G.adjoint());
256template <
typename MatrixType>
257inline void RealQZ<MatrixType>::computeNorms() {
258 const Index size = m_S.cols();
259 m_normOfS = Scalar(0.0);
260 m_normOfT = Scalar(0.0);
261 for (Index j = 0; j < size; ++j) {
262 m_normOfS += m_S.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum();
263 m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
268template <
typename MatrixType>
269inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) {
273 Scalar s = abs(m_S.coeff(res - 1, res - 1)) + abs(m_S.coeff(res, res));
274 if (numext::is_exactly_zero(s)) s = m_normOfS;
275 if (abs(m_S.coeff(res, res - 1)) < NumTraits<Scalar>::epsilon() * s)
break;
282template <
typename MatrixType>
283inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) {
287 if (abs(m_T.coeff(res, res)) <= NumTraits<Scalar>::epsilon() * m_normOfT)
break;
294template <
typename MatrixType>
295inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) {
298 const Index dim = m_S.cols();
299 if (numext::is_exactly_zero(abs(m_S.coeff(i + 1, i))))
return;
300 Index j = findSmallDiagEntry(i, i + 1);
303 Matrix2s STi = m_T.template block<2, 2>(i, i).template triangularView<Upper>().template solve<OnTheRight>(
304 m_S.template block<2, 2>(i, i));
305 Scalar p = Scalar(0.5) * (STi(0, 0) - STi(1, 1));
306 Scalar q = p * p + STi(1, 0) * STi(0, 1);
314 G.makeGivens(p + z, STi(1, 0));
316 G.makeGivens(p - z, STi(1, 0));
317 m_S.rightCols(dim - i).applyOnTheLeft(i, i + 1, G.adjoint());
318 m_T.rightCols(dim - i).applyOnTheLeft(i, i + 1, G.adjoint());
320 if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
322 G.makeGivens(m_T.coeff(i + 1, i + 1), m_T.coeff(i + 1, i));
323 m_S.topRows(i + 2).applyOnTheRight(i + 1, i, G);
324 m_T.topRows(i + 2).applyOnTheRight(i + 1, i, G);
326 if (m_computeQZ) m_Z.applyOnTheLeft(i + 1, i, G.adjoint());
328 m_S.coeffRef(i + 1, i) = Scalar(0.0);
329 m_T.coeffRef(i + 1, i) = Scalar(0.0);
332 pushDownZero(j, i, i + 1);
337template <
typename MatrixType>
338inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) {
340 const Index dim = m_S.cols();
341 for (Index zz = z; zz < l; zz++) {
343 Index firstColS = zz > f ? (zz - 1) : zz;
344 G.makeGivens(m_T.coeff(zz, zz + 1), m_T.coeff(zz + 1, zz + 1));
345 m_S.rightCols(dim - firstColS).applyOnTheLeft(zz, zz + 1, G.adjoint());
346 m_T.rightCols(dim - zz).applyOnTheLeft(zz, zz + 1, G.adjoint());
347 m_T.coeffRef(zz + 1, zz + 1) = Scalar(0.0);
349 if (m_computeQZ) m_Q.applyOnTheRight(zz, zz + 1, G);
352 G.makeGivens(m_S.coeff(zz + 1, zz), m_S.coeff(zz + 1, zz - 1));
353 m_S.topRows(zz + 2).applyOnTheRight(zz, zz - 1, G);
354 m_T.topRows(zz + 1).applyOnTheRight(zz, zz - 1, G);
355 m_S.coeffRef(zz + 1, zz - 1) = Scalar(0.0);
357 if (m_computeQZ) m_Z.applyOnTheLeft(zz, zz - 1, G.adjoint());
361 G.makeGivens(m_S.coeff(l, l), m_S.coeff(l, l - 1));
362 m_S.applyOnTheRight(l, l - 1, G);
363 m_T.applyOnTheRight(l, l - 1, G);
364 m_S.coeffRef(l, l - 1) = Scalar(0.0);
366 if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, G.adjoint());
370template <
typename MatrixType>
371inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) {
373 const Index dim = m_S.cols();
379 const Scalar a11 = m_S.coeff(f + 0, f + 0), a12 = m_S.coeff(f + 0, f + 1), a21 = m_S.coeff(f + 1, f + 0),
380 a22 = m_S.coeff(f + 1, f + 1), a32 = m_S.coeff(f + 2, f + 1), b12 = m_T.coeff(f + 0, f + 1),
381 b11i = Scalar(1.0) / m_T.coeff(f + 0, f + 0), b22i = Scalar(1.0) / m_T.coeff(f + 1, f + 1),
382 a87 = m_S.coeff(l - 1, l - 2), a98 = m_S.coeff(l - 0, l - 1),
383 b77i = Scalar(1.0) / m_T.coeff(l - 2, l - 2), b88i = Scalar(1.0) / m_T.coeff(l - 1, l - 1);
384 Scalar ss = abs(a87 * b77i) + abs(a98 * b88i), lpl = Scalar(1.5) * ss, ll = ss * ss;
385 x = ll + a11 * a11 * b11i * b11i - lpl * a11 * b11i + a12 * a21 * b11i * b22i -
386 a11 * a21 * b12 * b11i * b11i * b22i;
387 y = a11 * a21 * b11i * b11i - lpl * a21 * b11i + a21 * a22 * b11i * b22i - a21 * a21 * b12 * b11i * b11i * b22i;
388 z = a21 * a32 * b11i * b22i;
389 }
else if (iter == 16) {
391 x = m_S.coeff(f, f) / m_T.coeff(f, f) - m_S.coeff(l, l) / m_T.coeff(l, l) +
392 m_S.coeff(l, l - 1) * m_T.coeff(l - 1, l) / (m_T.coeff(l - 1, l - 1) * m_T.coeff(l, l));
393 y = m_S.coeff(f + 1, f) / m_T.coeff(f, f);
395 }
else if (iter > 23 && !(iter % 8)) {
397 x = internal::random<Scalar>(-1.0, 1.0);
398 y = internal::random<Scalar>(-1.0, 1.0);
399 z = internal::random<Scalar>(-1.0, 1.0);
407 const Scalar a11 = m_S.coeff(f, f), a12 = m_S.coeff(f, f + 1), a21 = m_S.coeff(f + 1, f),
408 a22 = m_S.coeff(f + 1, f + 1), a32 = m_S.coeff(f + 2, f + 1),
410 a88 = m_S.coeff(l - 1, l - 1), a89 = m_S.coeff(l - 1, l), a98 = m_S.coeff(l, l - 1),
411 a99 = m_S.coeff(l, l),
413 b11 = m_T.coeff(f, f), b12 = m_T.coeff(f, f + 1), b22 = m_T.coeff(f + 1, f + 1),
415 b88 = m_T.coeff(l - 1, l - 1), b89 = m_T.coeff(l - 1, l), b99 = m_T.coeff(l, l);
417 x = ((a88 / b88 - a11 / b11) * (a99 / b99 - a11 / b11) - (a89 / b99) * (a98 / b88) +
418 (a98 / b88) * (b89 / b99) * (a11 / b11)) *
420 a12 / b22 - (a11 / b11) * (b12 / b22);
421 y = (a22 / b22 - a11 / b11) - (a21 / b11) * (b12 / b22) - (a88 / b88 - a11 / b11) - (a99 / b99 - a11 / b11) +
422 (a98 / b88) * (b89 / b99);
428 for (Index k = f; k <= l - 2; k++) {
433 Vector3s hr(x, y, z);
436 hr.makeHouseholderInPlace(tau, beta);
437 essential2 = hr.template bottomRows<2>();
438 Index fc = (std::max)(k - 1, Index(0));
439 m_S.template middleRows<3>(k).rightCols(dim - fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
440 m_T.template middleRows<3>(k).rightCols(dim - fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
441 if (m_computeQZ) m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
442 if (k > f) m_S.coeffRef(k + 2, k - 1) = m_S.coeffRef(k + 1, k - 1) = Scalar(0.0);
445 hr << m_T.coeff(k + 2, k + 2), m_T.coeff(k + 2, k), m_T.coeff(k + 2, k + 1);
446 hr.makeHouseholderInPlace(tau, beta);
447 essential2 = hr.template bottomRows<2>();
449 Index lr = (std::min)(k + 4, dim);
450 Map<Matrix<Scalar, Dynamic, 1> > tmp(m_workspace.data(), lr);
452 tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
453 tmp += m_S.col(k + 2).head(lr);
454 m_S.col(k + 2).head(lr) -= tau * tmp;
455 m_S.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
457 tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
458 tmp += m_T.col(k + 2).head(lr);
459 m_T.col(k + 2).head(lr) -= tau * tmp;
460 m_T.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
464 Map<Matrix<Scalar, 1, Dynamic> > tmp(m_workspace.data(), dim);
465 tmp = essential2.adjoint() * (m_Z.template middleRows<2>(k));
466 tmp += m_Z.row(k + 2);
467 m_Z.row(k + 2) -= tau * tmp;
468 m_Z.template middleRows<2>(k) -= essential2 * (tau * tmp);
470 m_T.coeffRef(k + 2, k) = m_T.coeffRef(k + 2, k + 1) = Scalar(0.0);
473 G.makeGivens(m_T.coeff(k + 1, k + 1), m_T.coeff(k + 1, k));
474 m_S.applyOnTheRight(k + 1, k, G);
475 m_T.applyOnTheRight(k + 1, k, G);
477 if (m_computeQZ) m_Z.applyOnTheLeft(k + 1, k, G.adjoint());
478 m_T.coeffRef(k + 1, k) = Scalar(0.0);
481 x = m_S.coeff(k + 1, k);
482 y = m_S.coeff(k + 2, k);
483 if (k < l - 2) z = m_S.coeff(k + 3, k);
488 m_S.applyOnTheLeft(l - 1, l, G.adjoint());
489 m_T.applyOnTheLeft(l - 1, l, G.adjoint());
490 if (m_computeQZ) m_Q.applyOnTheRight(l - 1, l, G);
491 m_S.coeffRef(l, l - 2) = Scalar(0.0);
494 G.makeGivens(m_T.coeff(l, l), m_T.coeff(l, l - 1));
495 m_S.applyOnTheRight(l, l - 1, G);
496 m_T.applyOnTheRight(l, l - 1, G);
497 if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, G.adjoint());
498 m_T.coeffRef(l, l - 1) = Scalar(0.0);
501template <
typename MatrixType>
503 const Index dim = A_in.cols();
505 eigen_assert(A_in.rows() == dim && A_in.cols() == dim && B_in.rows() == dim && B_in.cols() == dim &&
506 "Need square matrices of the same dimension");
508 m_isInitialized =
true;
509 m_computeQZ = computeQZ;
512 m_workspace.resize(dim * 2);
516 hessenbergTriangular();
520 Index l = dim - 1, f, local_iter = 0;
522 while (l > 0 && local_iter < m_maxIters) {
523 f = findSmallSubdiagEntry(l);
525 if (f > 0) m_S.coeffRef(f, f - 1) = Scalar(0.0);
530 }
else if (f == l - 1)
538 Index z = findSmallDiagEntry(f, l);
541 pushDownZero(z, f, l);
546 step(f, l, local_iter);
560 for (
Index i = 0; i < dim - 1; ++i) {
561 if (!numext::is_exactly_zero(m_S.coeff(i + 1, i))) {
563 internal::real_2x2_jacobi_svd(m_T, i, i + 1, &j_left, &j_right);
566 m_S.applyOnTheLeft(i, i + 1, j_left);
567 m_S.applyOnTheRight(i, i + 1, j_right);
568 m_T.applyOnTheLeft(i, i + 1, j_left);
569 m_T.applyOnTheRight(i, i + 1, j_right);
570 m_T(i + 1, i) = m_T(i, i + 1) = Scalar(0);
573 m_Q.applyOnTheRight(i, i + 1, j_left.
transpose());
574 m_Z.applyOnTheLeft(i, i + 1, j_right.
transpose());