Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
RealQZ.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2012 Alexey Korepanov <[email protected]>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_REAL_QZ_H
11#define EIGEN_REAL_QZ_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
60template <typename MatrixType_>
61class RealQZ {
62 public:
63 typedef MatrixType_ MatrixType;
64 enum {
65 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
66 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
67 Options = internal::traits<MatrixType>::Options,
68 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
69 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
70 };
71 typedef typename MatrixType::Scalar Scalar;
72 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
74
77
89 explicit RealQZ(Index size = RowsAtCompileTime == Dynamic ? 1 : RowsAtCompileTime)
90 : m_S(size, size),
91 m_T(size, size),
92 m_Q(size, size),
93 m_Z(size, size),
94 m_workspace(size * 2),
95 m_maxIters(400),
96 m_isInitialized(false),
97 m_computeQZ(true) {}
98
107 RealQZ(const MatrixType& A, const MatrixType& B, bool computeQZ = true)
108 : m_S(A.rows(), A.cols()),
109 m_T(A.rows(), A.cols()),
110 m_Q(A.rows(), A.cols()),
111 m_Z(A.rows(), A.cols()),
112 m_workspace(A.rows() * 2),
113 m_maxIters(400),
114 m_isInitialized(false),
115 m_computeQZ(true) {
116 compute(A, B, computeQZ);
117 }
118
123 const MatrixType& matrixQ() const {
124 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
125 eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
126 return m_Q;
127 }
128
133 const MatrixType& matrixZ() const {
134 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
135 eigen_assert(m_computeQZ && "The matrices Q and Z have not been computed during the QZ decomposition.");
136 return m_Z;
137 }
138
143 const MatrixType& matrixS() const {
144 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
145 return m_S;
146 }
147
152 const MatrixType& matrixT() const {
153 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
154 return m_T;
155 }
156
164 RealQZ& compute(const MatrixType& A, const MatrixType& B, bool computeQZ = true);
165
171 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
172 return m_info;
173 }
174
178 eigen_assert(m_isInitialized && "RealQZ is not initialized.");
179 return m_global_iter;
180 }
181
186 m_maxIters = maxIters;
187 return *this;
188 }
189
190 private:
191 MatrixType m_S, m_T, m_Q, m_Z;
192 Matrix<Scalar, Dynamic, 1> m_workspace;
193 ComputationInfo m_info;
194 Index m_maxIters;
195 bool m_isInitialized;
196 bool m_computeQZ;
197 Scalar m_normOfT, m_normOfS;
198 Index m_global_iter;
199
200 typedef Matrix<Scalar, 3, 1> Vector3s;
201 typedef Matrix<Scalar, 2, 1> Vector2s;
202 typedef Matrix<Scalar, 2, 2> Matrix2s;
203 typedef JacobiRotation<Scalar> JRs;
204
205 void hessenbergTriangular();
206 void computeNorms();
207 Index findSmallSubdiagEntry(Index iu);
208 Index findSmallDiagEntry(Index f, Index l);
209 void splitOffTwoRows(Index i);
210 void pushDownZero(Index z, Index f, Index l);
211 void step(Index f, Index l, Index iter);
212
213}; // RealQZ
214
216template <typename MatrixType>
217void RealQZ<MatrixType>::hessenbergTriangular() {
218 const Index dim = m_S.cols();
219
220 // perform QR decomposition of T, overwrite T with R, save Q
221 HouseholderQR<MatrixType> qrT(m_T);
222 m_T = qrT.matrixQR();
223 m_T.template triangularView<StrictlyLower>().setZero();
224 m_Q = qrT.householderQ();
225 // overwrite S with Q* S
226 m_S.applyOnTheLeft(m_Q.adjoint());
227 // init Z as Identity
228 if (m_computeQZ) m_Z = MatrixType::Identity(dim, dim);
229 // reduce S to upper Hessenberg with Givens rotations
230 for (Index j = 0; j <= dim - 3; j++) {
231 for (Index i = dim - 1; i >= j + 2; i--) {
232 JRs G;
233 // kill S(i,j)
234 if (!numext::is_exactly_zero(m_S.coeff(i, j))) {
235 G.makeGivens(m_S.coeff(i - 1, j), m_S.coeff(i, j), &m_S.coeffRef(i - 1, j));
236 m_S.coeffRef(i, j) = Scalar(0.0);
237 m_S.rightCols(dim - j - 1).applyOnTheLeft(i - 1, i, G.adjoint());
238 m_T.rightCols(dim - i + 1).applyOnTheLeft(i - 1, i, G.adjoint());
239 // update Q
240 if (m_computeQZ) m_Q.applyOnTheRight(i - 1, i, G);
241 }
242 // kill T(i,i-1)
243 if (!numext::is_exactly_zero(m_T.coeff(i, i - 1))) {
244 G.makeGivens(m_T.coeff(i, i), m_T.coeff(i, i - 1), &m_T.coeffRef(i, i));
245 m_T.coeffRef(i, i - 1) = Scalar(0.0);
246 m_S.applyOnTheRight(i, i - 1, G);
247 m_T.topRows(i).applyOnTheRight(i, i - 1, G);
248 // update Z
249 if (m_computeQZ) m_Z.applyOnTheLeft(i, i - 1, G.adjoint());
250 }
251 }
252 }
253}
254
256template <typename MatrixType>
257inline void RealQZ<MatrixType>::computeNorms() {
258 const Index size = m_S.cols();
259 m_normOfS = Scalar(0.0);
260 m_normOfT = Scalar(0.0);
261 for (Index j = 0; j < size; ++j) {
262 m_normOfS += m_S.col(j).segment(0, (std::min)(size, j + 2)).cwiseAbs().sum();
263 m_normOfT += m_T.row(j).segment(j, size - j).cwiseAbs().sum();
264 }
265}
266
268template <typename MatrixType>
269inline Index RealQZ<MatrixType>::findSmallSubdiagEntry(Index iu) {
270 using std::abs;
271 Index res = iu;
272 while (res > 0) {
273 Scalar s = abs(m_S.coeff(res - 1, res - 1)) + abs(m_S.coeff(res, res));
274 if (numext::is_exactly_zero(s)) s = m_normOfS;
275 if (abs(m_S.coeff(res, res - 1)) < NumTraits<Scalar>::epsilon() * s) break;
276 res--;
277 }
278 return res;
279}
280
282template <typename MatrixType>
283inline Index RealQZ<MatrixType>::findSmallDiagEntry(Index f, Index l) {
284 using std::abs;
285 Index res = l;
286 while (res >= f) {
287 if (abs(m_T.coeff(res, res)) <= NumTraits<Scalar>::epsilon() * m_normOfT) break;
288 res--;
289 }
290 return res;
291}
292
294template <typename MatrixType>
295inline void RealQZ<MatrixType>::splitOffTwoRows(Index i) {
296 using std::abs;
297 using std::sqrt;
298 const Index dim = m_S.cols();
299 if (numext::is_exactly_zero(abs(m_S.coeff(i + 1, i)))) return;
300 Index j = findSmallDiagEntry(i, i + 1);
301 if (j == i - 1) {
302 // block of (S T^{-1})
303 Matrix2s STi = m_T.template block<2, 2>(i, i).template triangularView<Upper>().template solve<OnTheRight>(
304 m_S.template block<2, 2>(i, i));
305 Scalar p = Scalar(0.5) * (STi(0, 0) - STi(1, 1));
306 Scalar q = p * p + STi(1, 0) * STi(0, 1);
307 if (q >= 0) {
308 Scalar z = sqrt(q);
309 // one QR-like iteration for ABi - lambda I
310 // is enough - when we know exact eigenvalue in advance,
311 // convergence is immediate
312 JRs G;
313 if (p >= 0)
314 G.makeGivens(p + z, STi(1, 0));
315 else
316 G.makeGivens(p - z, STi(1, 0));
317 m_S.rightCols(dim - i).applyOnTheLeft(i, i + 1, G.adjoint());
318 m_T.rightCols(dim - i).applyOnTheLeft(i, i + 1, G.adjoint());
319 // update Q
320 if (m_computeQZ) m_Q.applyOnTheRight(i, i + 1, G);
321
322 G.makeGivens(m_T.coeff(i + 1, i + 1), m_T.coeff(i + 1, i));
323 m_S.topRows(i + 2).applyOnTheRight(i + 1, i, G);
324 m_T.topRows(i + 2).applyOnTheRight(i + 1, i, G);
325 // update Z
326 if (m_computeQZ) m_Z.applyOnTheLeft(i + 1, i, G.adjoint());
327
328 m_S.coeffRef(i + 1, i) = Scalar(0.0);
329 m_T.coeffRef(i + 1, i) = Scalar(0.0);
330 }
331 } else {
332 pushDownZero(j, i, i + 1);
333 }
334}
335
337template <typename MatrixType>
338inline void RealQZ<MatrixType>::pushDownZero(Index z, Index f, Index l) {
339 JRs G;
340 const Index dim = m_S.cols();
341 for (Index zz = z; zz < l; zz++) {
342 // push 0 down
343 Index firstColS = zz > f ? (zz - 1) : zz;
344 G.makeGivens(m_T.coeff(zz, zz + 1), m_T.coeff(zz + 1, zz + 1));
345 m_S.rightCols(dim - firstColS).applyOnTheLeft(zz, zz + 1, G.adjoint());
346 m_T.rightCols(dim - zz).applyOnTheLeft(zz, zz + 1, G.adjoint());
347 m_T.coeffRef(zz + 1, zz + 1) = Scalar(0.0);
348 // update Q
349 if (m_computeQZ) m_Q.applyOnTheRight(zz, zz + 1, G);
350 // kill S(zz+1, zz-1)
351 if (zz > f) {
352 G.makeGivens(m_S.coeff(zz + 1, zz), m_S.coeff(zz + 1, zz - 1));
353 m_S.topRows(zz + 2).applyOnTheRight(zz, zz - 1, G);
354 m_T.topRows(zz + 1).applyOnTheRight(zz, zz - 1, G);
355 m_S.coeffRef(zz + 1, zz - 1) = Scalar(0.0);
356 // update Z
357 if (m_computeQZ) m_Z.applyOnTheLeft(zz, zz - 1, G.adjoint());
358 }
359 }
360 // finally kill S(l,l-1)
361 G.makeGivens(m_S.coeff(l, l), m_S.coeff(l, l - 1));
362 m_S.applyOnTheRight(l, l - 1, G);
363 m_T.applyOnTheRight(l, l - 1, G);
364 m_S.coeffRef(l, l - 1) = Scalar(0.0);
365 // update Z
366 if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, G.adjoint());
367}
368
370template <typename MatrixType>
371inline void RealQZ<MatrixType>::step(Index f, Index l, Index iter) {
372 using std::abs;
373 const Index dim = m_S.cols();
374
375 // x, y, z
376 Scalar x, y, z;
377 if (iter == 10) {
378 // Wilkinson ad hoc shift
379 const Scalar a11 = m_S.coeff(f + 0, f + 0), a12 = m_S.coeff(f + 0, f + 1), a21 = m_S.coeff(f + 1, f + 0),
380 a22 = m_S.coeff(f + 1, f + 1), a32 = m_S.coeff(f + 2, f + 1), b12 = m_T.coeff(f + 0, f + 1),
381 b11i = Scalar(1.0) / m_T.coeff(f + 0, f + 0), b22i = Scalar(1.0) / m_T.coeff(f + 1, f + 1),
382 a87 = m_S.coeff(l - 1, l - 2), a98 = m_S.coeff(l - 0, l - 1),
383 b77i = Scalar(1.0) / m_T.coeff(l - 2, l - 2), b88i = Scalar(1.0) / m_T.coeff(l - 1, l - 1);
384 Scalar ss = abs(a87 * b77i) + abs(a98 * b88i), lpl = Scalar(1.5) * ss, ll = ss * ss;
385 x = ll + a11 * a11 * b11i * b11i - lpl * a11 * b11i + a12 * a21 * b11i * b22i -
386 a11 * a21 * b12 * b11i * b11i * b22i;
387 y = a11 * a21 * b11i * b11i - lpl * a21 * b11i + a21 * a22 * b11i * b22i - a21 * a21 * b12 * b11i * b11i * b22i;
388 z = a21 * a32 * b11i * b22i;
389 } else if (iter == 16) {
390 // another exceptional shift
391 x = m_S.coeff(f, f) / m_T.coeff(f, f) - m_S.coeff(l, l) / m_T.coeff(l, l) +
392 m_S.coeff(l, l - 1) * m_T.coeff(l - 1, l) / (m_T.coeff(l - 1, l - 1) * m_T.coeff(l, l));
393 y = m_S.coeff(f + 1, f) / m_T.coeff(f, f);
394 z = 0;
395 } else if (iter > 23 && !(iter % 8)) {
396 // extremely exceptional shift
397 x = internal::random<Scalar>(-1.0, 1.0);
398 y = internal::random<Scalar>(-1.0, 1.0);
399 z = internal::random<Scalar>(-1.0, 1.0);
400 } else {
401 // Compute the shifts: (x,y,z,0...) = (AB^-1 - l1 I) (AB^-1 - l2 I) e1
402 // where l1 and l2 are the eigenvalues of the 2x2 matrix C = U V^-1 where
403 // U and V are 2x2 bottom right sub matrices of A and B. Thus:
404 // = AB^-1AB^-1 + l1 l2 I - (l1+l2)(AB^-1)
405 // = AB^-1AB^-1 + det(M) - tr(M)(AB^-1)
406 // Since we are only interested in having x, y, z with a correct ratio, we have:
407 const Scalar a11 = m_S.coeff(f, f), a12 = m_S.coeff(f, f + 1), a21 = m_S.coeff(f + 1, f),
408 a22 = m_S.coeff(f + 1, f + 1), a32 = m_S.coeff(f + 2, f + 1),
409
410 a88 = m_S.coeff(l - 1, l - 1), a89 = m_S.coeff(l - 1, l), a98 = m_S.coeff(l, l - 1),
411 a99 = m_S.coeff(l, l),
412
413 b11 = m_T.coeff(f, f), b12 = m_T.coeff(f, f + 1), b22 = m_T.coeff(f + 1, f + 1),
414
415 b88 = m_T.coeff(l - 1, l - 1), b89 = m_T.coeff(l - 1, l), b99 = m_T.coeff(l, l);
416
417 x = ((a88 / b88 - a11 / b11) * (a99 / b99 - a11 / b11) - (a89 / b99) * (a98 / b88) +
418 (a98 / b88) * (b89 / b99) * (a11 / b11)) *
419 (b11 / a21) +
420 a12 / b22 - (a11 / b11) * (b12 / b22);
421 y = (a22 / b22 - a11 / b11) - (a21 / b11) * (b12 / b22) - (a88 / b88 - a11 / b11) - (a99 / b99 - a11 / b11) +
422 (a98 / b88) * (b89 / b99);
423 z = a32 / b22;
424 }
425
426 JRs G;
427
428 for (Index k = f; k <= l - 2; k++) {
429 // variables for Householder reflections
430 Vector2s essential2;
431 Scalar tau, beta;
432
433 Vector3s hr(x, y, z);
434
435 // Q_k to annihilate S(k+1,k-1) and S(k+2,k-1)
436 hr.makeHouseholderInPlace(tau, beta);
437 essential2 = hr.template bottomRows<2>();
438 Index fc = (std::max)(k - 1, Index(0)); // first col to update
439 m_S.template middleRows<3>(k).rightCols(dim - fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
440 m_T.template middleRows<3>(k).rightCols(dim - fc).applyHouseholderOnTheLeft(essential2, tau, m_workspace.data());
441 if (m_computeQZ) m_Q.template middleCols<3>(k).applyHouseholderOnTheRight(essential2, tau, m_workspace.data());
442 if (k > f) m_S.coeffRef(k + 2, k - 1) = m_S.coeffRef(k + 1, k - 1) = Scalar(0.0);
443
444 // Z_{k1} to annihilate T(k+2,k+1) and T(k+2,k)
445 hr << m_T.coeff(k + 2, k + 2), m_T.coeff(k + 2, k), m_T.coeff(k + 2, k + 1);
446 hr.makeHouseholderInPlace(tau, beta);
447 essential2 = hr.template bottomRows<2>();
448 {
449 Index lr = (std::min)(k + 4, dim); // last row to update
450 Map<Matrix<Scalar, Dynamic, 1> > tmp(m_workspace.data(), lr);
451 // S
452 tmp = m_S.template middleCols<2>(k).topRows(lr) * essential2;
453 tmp += m_S.col(k + 2).head(lr);
454 m_S.col(k + 2).head(lr) -= tau * tmp;
455 m_S.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
456 // T
457 tmp = m_T.template middleCols<2>(k).topRows(lr) * essential2;
458 tmp += m_T.col(k + 2).head(lr);
459 m_T.col(k + 2).head(lr) -= tau * tmp;
460 m_T.template middleCols<2>(k).topRows(lr) -= (tau * tmp) * essential2.adjoint();
461 }
462 if (m_computeQZ) {
463 // Z
464 Map<Matrix<Scalar, 1, Dynamic> > tmp(m_workspace.data(), dim);
465 tmp = essential2.adjoint() * (m_Z.template middleRows<2>(k));
466 tmp += m_Z.row(k + 2);
467 m_Z.row(k + 2) -= tau * tmp;
468 m_Z.template middleRows<2>(k) -= essential2 * (tau * tmp);
469 }
470 m_T.coeffRef(k + 2, k) = m_T.coeffRef(k + 2, k + 1) = Scalar(0.0);
471
472 // Z_{k2} to annihilate T(k+1,k)
473 G.makeGivens(m_T.coeff(k + 1, k + 1), m_T.coeff(k + 1, k));
474 m_S.applyOnTheRight(k + 1, k, G);
475 m_T.applyOnTheRight(k + 1, k, G);
476 // update Z
477 if (m_computeQZ) m_Z.applyOnTheLeft(k + 1, k, G.adjoint());
478 m_T.coeffRef(k + 1, k) = Scalar(0.0);
479
480 // update x,y,z
481 x = m_S.coeff(k + 1, k);
482 y = m_S.coeff(k + 2, k);
483 if (k < l - 2) z = m_S.coeff(k + 3, k);
484 } // loop over k
485
486 // Q_{n-1} to annihilate y = S(l,l-2)
487 G.makeGivens(x, y);
488 m_S.applyOnTheLeft(l - 1, l, G.adjoint());
489 m_T.applyOnTheLeft(l - 1, l, G.adjoint());
490 if (m_computeQZ) m_Q.applyOnTheRight(l - 1, l, G);
491 m_S.coeffRef(l, l - 2) = Scalar(0.0);
492
493 // Z_{n-1} to annihilate T(l,l-1)
494 G.makeGivens(m_T.coeff(l, l), m_T.coeff(l, l - 1));
495 m_S.applyOnTheRight(l, l - 1, G);
496 m_T.applyOnTheRight(l, l - 1, G);
497 if (m_computeQZ) m_Z.applyOnTheLeft(l, l - 1, G.adjoint());
498 m_T.coeffRef(l, l - 1) = Scalar(0.0);
499}
500
501template <typename MatrixType>
502RealQZ<MatrixType>& RealQZ<MatrixType>::compute(const MatrixType& A_in, const MatrixType& B_in, bool computeQZ) {
503 const Index dim = A_in.cols();
504
505 eigen_assert(A_in.rows() == dim && A_in.cols() == dim && B_in.rows() == dim && B_in.cols() == dim &&
506 "Need square matrices of the same dimension");
507
508 m_isInitialized = true;
509 m_computeQZ = computeQZ;
510 m_S = A_in;
511 m_T = B_in;
512 m_workspace.resize(dim * 2);
513 m_global_iter = 0;
514
515 // entrance point: hessenberg triangular decomposition
516 hessenbergTriangular();
517 // compute L1 vector norms of T, S into m_normOfS, m_normOfT
518 computeNorms();
519
520 Index l = dim - 1, f, local_iter = 0;
521
522 while (l > 0 && local_iter < m_maxIters) {
523 f = findSmallSubdiagEntry(l);
524 // now rows and columns f..l (including) decouple from the rest of the problem
525 if (f > 0) m_S.coeffRef(f, f - 1) = Scalar(0.0);
526 if (f == l) // One root found
527 {
528 l--;
529 local_iter = 0;
530 } else if (f == l - 1) // Two roots found
531 {
532 splitOffTwoRows(f);
533 l -= 2;
534 local_iter = 0;
535 } else // No convergence yet
536 {
537 // if there's zero on diagonal of T, we can isolate an eigenvalue with Givens rotations
538 Index z = findSmallDiagEntry(f, l);
539 if (z >= f) {
540 // zero found
541 pushDownZero(z, f, l);
542 } else {
543 // We are sure now that S.block(f,f, l-f+1,l-f+1) is underuced upper-Hessenberg
544 // and T.block(f,f, l-f+1,l-f+1) is invertible uper-triangular, which allows to
545 // apply a QR-like iteration to rows and columns f..l.
546 step(f, l, local_iter);
547 local_iter++;
548 m_global_iter++;
549 }
550 }
551 }
552 // check if we converged before reaching iterations limit
553 m_info = (local_iter < m_maxIters) ? Success : NoConvergence;
554
555 // For each non triangular 2x2 diagonal block of S,
556 // reduce the respective 2x2 diagonal block of T to positive diagonal form using 2x2 SVD.
557 // This step is not mandatory for QZ, but it does help further extraction of eigenvalues/eigenvectors,
558 // and is in par with Lapack/Matlab QZ.
559 if (m_info == Success) {
560 for (Index i = 0; i < dim - 1; ++i) {
561 if (!numext::is_exactly_zero(m_S.coeff(i + 1, i))) {
562 JacobiRotation<Scalar> j_left, j_right;
563 internal::real_2x2_jacobi_svd(m_T, i, i + 1, &j_left, &j_right);
564
565 // Apply resulting Jacobi rotations
566 m_S.applyOnTheLeft(i, i + 1, j_left);
567 m_S.applyOnTheRight(i, i + 1, j_right);
568 m_T.applyOnTheLeft(i, i + 1, j_left);
569 m_T.applyOnTheRight(i, i + 1, j_right);
570 m_T(i + 1, i) = m_T(i, i + 1) = Scalar(0);
571
572 if (m_computeQZ) {
573 m_Q.applyOnTheRight(i, i + 1, j_left.transpose());
574 m_Z.applyOnTheLeft(i, i + 1, j_right.transpose());
575 }
576
577 i++;
578 }
579 }
580 }
581
582 return *this;
583} // end compute
584
585} // end namespace Eigen
586
587#endif // EIGEN_REAL_QZ
Rotation given by a cosine-sine pair.
Definition Jacobi.h:38
JacobiRotation transpose() const
Definition Jacobi.h:61
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
Performs a real QZ decomposition of a pair of square matrices.
Definition RealQZ.h:61
const MatrixType & matrixT() const
Returns matrix S in the QZ decomposition.
Definition RealQZ.h:152
const MatrixType & matrixS() const
Returns matrix S in the QZ decomposition.
Definition RealQZ.h:143
RealQZ & compute(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Computes QZ decomposition of given matrix.
Definition RealQZ.h:502
Index iterations() const
Returns number of performed QR-like iterations.
Definition RealQZ.h:177
RealQZ(const MatrixType &A, const MatrixType &B, bool computeQZ=true)
Constructor; computes real QZ decomposition of given matrices.
Definition RealQZ.h:107
ComputationInfo info() const
Reports whether previous computation was successful.
Definition RealQZ.h:170
RealQZ(Index size=RowsAtCompileTime==Dynamic ? 1 :RowsAtCompileTime)
Default constructor.
Definition RealQZ.h:89
const MatrixType & matrixZ() const
Returns matrix Z in the QZ decomposition.
Definition RealQZ.h:133
Eigen::Index Index
Definition RealQZ.h:73
RealQZ & setMaxIterations(Index maxIters)
Definition RealQZ.h:185
const MatrixType & matrixQ() const
Returns matrix Q in the QZ decomposition.
Definition RealQZ.h:123
ComputationInfo
Definition Constants.h:438
@ Success
Definition Constants.h:440
@ NoConvergence
Definition Constants.h:444
Namespace containing all symbols from the Eigen library.
Definition Core:137
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
const int Dynamic
Definition Constants.h:25