Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
LeastSquareConjugateGradient.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2015 Gael Guennebaud <[email protected]>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
11#define EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19
29template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
30EIGEN_DONT_INLINE void least_square_conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
31 const Preconditioner& precond, Index& iters,
32 typename Dest::RealScalar& tol_error) {
33 using std::abs;
34 using std::sqrt;
35 typedef typename Dest::RealScalar RealScalar;
36 typedef typename Dest::Scalar Scalar;
37 typedef Matrix<Scalar, Dynamic, 1> VectorType;
38
39 RealScalar tol = tol_error;
40 Index maxIters = iters;
41
42 Index m = mat.rows(), n = mat.cols();
43
44 VectorType residual = rhs - mat * x;
45 VectorType normal_residual = mat.adjoint() * residual;
46
47 RealScalar rhsNorm2 = (mat.adjoint() * rhs).squaredNorm();
48 if (rhsNorm2 == 0) {
49 x.setZero();
50 iters = 0;
51 tol_error = 0;
52 return;
53 }
54 RealScalar threshold = tol * tol * rhsNorm2;
55 RealScalar residualNorm2 = normal_residual.squaredNorm();
56 if (residualNorm2 < threshold) {
57 iters = 0;
58 tol_error = sqrt(residualNorm2 / rhsNorm2);
59 return;
60 }
61
62 VectorType p(n);
63 p = precond.solve(normal_residual); // initial search direction
64
65 VectorType z(n), tmp(m);
66 RealScalar absNew = numext::real(normal_residual.dot(p)); // the square of the absolute value of r scaled by invM
67 Index i = 0;
68 while (i < maxIters) {
69 tmp.noalias() = mat * p;
70
71 Scalar alpha = absNew / tmp.squaredNorm(); // the amount we travel on dir
72 x += alpha * p; // update solution
73 residual -= alpha * tmp; // update residual
74 normal_residual.noalias() = mat.adjoint() * residual; // update residual of the normal equation
75
76 residualNorm2 = normal_residual.squaredNorm();
77 if (residualNorm2 < threshold) break;
78
79 z = precond.solve(normal_residual); // approximately solve for "A'A z = normal_residual"
80
81 RealScalar absOld = absNew;
82 absNew = numext::real(normal_residual.dot(z)); // update the absolute value of r
83 RealScalar beta = absNew / absOld; // calculate the Gram-Schmidt value used to create the new search direction
84 p = z + beta * p; // update search direction
85 i++;
86 }
87 tol_error = sqrt(residualNorm2 / rhsNorm2);
88 iters = i;
89}
90
91} // namespace internal
92
93template <typename MatrixType_,
94 typename Preconditioner_ = LeastSquareDiagonalPreconditioner<typename MatrixType_::Scalar> >
95class LeastSquaresConjugateGradient;
96
97namespace internal {
98
99template <typename MatrixType_, typename Preconditioner_>
100struct traits<LeastSquaresConjugateGradient<MatrixType_, Preconditioner_> > {
101 typedef MatrixType_ MatrixType;
102 typedef Preconditioner_ Preconditioner;
103};
104
105} // namespace internal
106
145template <typename MatrixType_, typename Preconditioner_>
147 : public IterativeSolverBase<LeastSquaresConjugateGradient<MatrixType_, Preconditioner_> > {
149 using Base::m_error;
150 using Base::m_info;
151 using Base::m_isInitialized;
152 using Base::m_iterations;
153 using Base::matrix;
154
155 public:
156 typedef MatrixType_ MatrixType;
157 typedef typename MatrixType::Scalar Scalar;
158 typedef typename MatrixType::RealScalar RealScalar;
159 typedef Preconditioner_ Preconditioner;
160
161 public:
164
175 template <typename MatrixDerived>
177
179
181 template <typename Rhs, typename Dest>
182 void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const {
183 m_iterations = Base::maxIterations();
184 m_error = Base::m_tolerance;
185
186 internal::least_square_conjugate_gradient(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error);
187 m_info = m_error <= Base::m_tolerance ? Success : NoConvergence;
188 }
189};
190
191} // end namespace Eigen
192
193#endif // EIGEN_LEAST_SQUARE_CONJUGATE_GRADIENT_H
Base class for linear iterative solvers.
Definition IterativeSolverBase.h:124
Index maxIterations() const
Definition IterativeSolverBase.h:251
A conjugate gradient solver for sparse (or dense) least-square problems.
Definition LeastSquareConjugateGradient.h:147
LeastSquaresConjugateGradient()
Definition LeastSquareConjugateGradient.h:163
LeastSquaresConjugateGradient(const EigenBase< MatrixDerived > &A)
Definition LeastSquareConjugateGradient.h:176
@ Success
Definition Constants.h:440
@ NoConvergence
Definition Constants.h:444
Namespace containing all symbols from the Eigen library.
Definition Core:137
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
Definition EigenBase.h:33