Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
LLT.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <[email protected]>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_LLT_H
11#define EIGEN_LLT_H
12
13// IWYU pragma: private
14#include "./InternalHeaderCheck.h"
15
16namespace Eigen {
17
18namespace internal {
19
20template <typename MatrixType_, int UpLo_>
21struct traits<LLT<MatrixType_, UpLo_> > : traits<MatrixType_> {
22 typedef MatrixXpr XprKind;
23 typedef SolverStorage StorageKind;
24 typedef int StorageIndex;
25 enum { Flags = 0 };
26};
27
28template <typename MatrixType, int UpLo>
29struct LLT_Traits;
30} // namespace internal
31
69template <typename MatrixType_, int UpLo_>
70class LLT : public SolverBase<LLT<MatrixType_, UpLo_> > {
71 public:
72 typedef MatrixType_ MatrixType;
73 typedef SolverBase<LLT> Base;
74 friend class SolverBase<LLT>;
75
76 EIGEN_GENERIC_PUBLIC_INTERFACE(LLT)
77 enum { MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime };
78
79 enum { PacketSize = internal::packet_traits<Scalar>::size, AlignmentMask = int(PacketSize) - 1, UpLo = UpLo_ };
80
81 typedef internal::LLT_Traits<MatrixType, UpLo> Traits;
82
89 LLT() : m_matrix(), m_isInitialized(false) {}
90
97 explicit LLT(Index size) : m_matrix(size, size), m_isInitialized(false) {}
98
99 template <typename InputType>
100 explicit LLT(const EigenBase<InputType>& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_isInitialized(false) {
101 compute(matrix.derived());
102 }
103
111 template <typename InputType>
112 explicit LLT(EigenBase<InputType>& matrix) : m_matrix(matrix.derived()), m_isInitialized(false) {
113 compute(matrix.derived());
114 }
115
117 inline typename Traits::MatrixU matrixU() const {
118 eigen_assert(m_isInitialized && "LLT is not initialized.");
119 return Traits::getU(m_matrix);
120 }
121
123 inline typename Traits::MatrixL matrixL() const {
124 eigen_assert(m_isInitialized && "LLT is not initialized.");
125 return Traits::getL(m_matrix);
126 }
127
128#ifdef EIGEN_PARSED_BY_DOXYGEN
139 template <typename Rhs>
140 inline const Solve<LLT, Rhs> solve(const MatrixBase<Rhs>& b) const;
141#endif
142
143 template <typename Derived>
144 void solveInPlace(const MatrixBase<Derived>& bAndX) const;
145
146 template <typename InputType>
147 LLT& compute(const EigenBase<InputType>& matrix);
148
152 RealScalar rcond() const {
153 eigen_assert(m_isInitialized && "LLT is not initialized.");
154 eigen_assert(m_info == Success && "LLT failed because matrix appears to be negative");
155 return internal::rcond_estimate_helper(m_l1_norm, *this);
156 }
157
162 inline const MatrixType& matrixLLT() const {
163 eigen_assert(m_isInitialized && "LLT is not initialized.");
164 return m_matrix;
165 }
166
167 MatrixType reconstructedMatrix() const;
168
175 eigen_assert(m_isInitialized && "LLT is not initialized.");
176 return m_info;
177 }
178
185 const LLT& adjoint() const EIGEN_NOEXCEPT { return *this; }
186
187 inline EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT { return m_matrix.rows(); }
188 inline EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT { return m_matrix.cols(); }
189
190 template <typename VectorType>
191 LLT& rankUpdate(const VectorType& vec, const RealScalar& sigma = 1);
192
193#ifndef EIGEN_PARSED_BY_DOXYGEN
194 template <typename RhsType, typename DstType>
195 void _solve_impl(const RhsType& rhs, DstType& dst) const;
196
197 template <bool Conjugate, typename RhsType, typename DstType>
198 void _solve_impl_transposed(const RhsType& rhs, DstType& dst) const;
199#endif
200
201 protected:
202 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
203
204
208 MatrixType m_matrix;
209 RealScalar m_l1_norm;
210 bool m_isInitialized;
211 ComputationInfo m_info;
212};
213
214namespace internal {
215
216template <typename Scalar, int UpLo>
217struct llt_inplace;
218
219template <typename MatrixType, typename VectorType>
220static Index llt_rank_update_lower(MatrixType& mat, const VectorType& vec,
221 const typename MatrixType::RealScalar& sigma) {
222 using std::sqrt;
223 typedef typename MatrixType::Scalar Scalar;
224 typedef typename MatrixType::RealScalar RealScalar;
225 typedef typename MatrixType::ColXpr ColXpr;
226 typedef internal::remove_all_t<ColXpr> ColXprCleaned;
227 typedef typename ColXprCleaned::SegmentReturnType ColXprSegment;
228 typedef Matrix<Scalar, Dynamic, 1> TempVectorType;
229 typedef typename TempVectorType::SegmentReturnType TempVecSegment;
230
231 Index n = mat.cols();
232 eigen_assert(mat.rows() == n && vec.size() == n);
233
234 TempVectorType temp;
235
236 if (sigma > 0) {
237 // This version is based on Givens rotations.
238 // It is faster than the other one below, but only works for updates,
239 // i.e., for sigma > 0
240 temp = sqrt(sigma) * vec;
241
242 for (Index i = 0; i < n; ++i) {
243 JacobiRotation<Scalar> g;
244 g.makeGivens(mat(i, i), -temp(i), &mat(i, i));
245
246 Index rs = n - i - 1;
247 if (rs > 0) {
248 ColXprSegment x(mat.col(i).tail(rs));
249 TempVecSegment y(temp.tail(rs));
250 apply_rotation_in_the_plane(x, y, g);
251 }
252 }
253 } else {
254 temp = vec;
255 RealScalar beta = 1;
256 for (Index j = 0; j < n; ++j) {
257 RealScalar Ljj = numext::real(mat.coeff(j, j));
258 RealScalar dj = numext::abs2(Ljj);
259 Scalar wj = temp.coeff(j);
260 RealScalar swj2 = sigma * numext::abs2(wj);
261 RealScalar gamma = dj * beta + swj2;
262
263 RealScalar x = dj + swj2 / beta;
264 if (x <= RealScalar(0)) return j;
265 RealScalar nLjj = sqrt(x);
266 mat.coeffRef(j, j) = nLjj;
267 beta += swj2 / dj;
268
269 // Update the terms of L
270 Index rs = n - j - 1;
271 if (rs) {
272 temp.tail(rs) -= (wj / Ljj) * mat.col(j).tail(rs);
273 if (!numext::is_exactly_zero(gamma))
274 mat.col(j).tail(rs) =
275 (nLjj / Ljj) * mat.col(j).tail(rs) + (nLjj * sigma * numext::conj(wj) / gamma) * temp.tail(rs);
276 }
277 }
278 }
279 return -1;
280}
281
282template <typename Scalar>
283struct llt_inplace<Scalar, Lower> {
284 typedef typename NumTraits<Scalar>::Real RealScalar;
285 template <typename MatrixType>
286 static Index unblocked(MatrixType& mat) {
287 using std::sqrt;
288
289 eigen_assert(mat.rows() == mat.cols());
290 const Index size = mat.rows();
291 for (Index k = 0; k < size; ++k) {
292 Index rs = size - k - 1; // remaining size
293
294 Block<MatrixType, Dynamic, 1> A21(mat, k + 1, k, rs, 1);
295 Block<MatrixType, 1, Dynamic> A10(mat, k, 0, 1, k);
296 Block<MatrixType, Dynamic, Dynamic> A20(mat, k + 1, 0, rs, k);
297
298 RealScalar x = numext::real(mat.coeff(k, k));
299 if (k > 0) x -= A10.squaredNorm();
300 if (x <= RealScalar(0)) return k;
301 mat.coeffRef(k, k) = x = sqrt(x);
302 if (k > 0 && rs > 0) A21.noalias() -= A20 * A10.adjoint();
303 if (rs > 0) A21 /= x;
304 }
305 return -1;
306 }
307
308 template <typename MatrixType>
309 static Index blocked(MatrixType& m) {
310 eigen_assert(m.rows() == m.cols());
311 Index size = m.rows();
312 if (size < 32) return unblocked(m);
313
314 Index blockSize = size / 8;
315 blockSize = (blockSize / 16) * 16;
316 blockSize = (std::min)((std::max)(blockSize, Index(8)), Index(128));
317
318 for (Index k = 0; k < size; k += blockSize) {
319 // partition the matrix:
320 // A00 | - | -
321 // lu = A10 | A11 | -
322 // A20 | A21 | A22
323 Index bs = (std::min)(blockSize, size - k);
324 Index rs = size - k - bs;
325 Block<MatrixType, Dynamic, Dynamic> A11(m, k, k, bs, bs);
326 Block<MatrixType, Dynamic, Dynamic> A21(m, k + bs, k, rs, bs);
327 Block<MatrixType, Dynamic, Dynamic> A22(m, k + bs, k + bs, rs, rs);
328
329 Index ret;
330 if ((ret = unblocked(A11)) >= 0) return k + ret;
331 if (rs > 0) A11.adjoint().template triangularView<Upper>().template solveInPlace<OnTheRight>(A21);
332 if (rs > 0)
333 A22.template selfadjointView<Lower>().rankUpdate(A21,
334 typename NumTraits<RealScalar>::Literal(-1)); // bottleneck
335 }
336 return -1;
337 }
338
339 template <typename MatrixType, typename VectorType>
340 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) {
341 return Eigen::internal::llt_rank_update_lower(mat, vec, sigma);
342 }
343};
344
345template <typename Scalar>
346struct llt_inplace<Scalar, Upper> {
347 typedef typename NumTraits<Scalar>::Real RealScalar;
348
349 template <typename MatrixType>
350 static EIGEN_STRONG_INLINE Index unblocked(MatrixType& mat) {
351 Transpose<MatrixType> matt(mat);
352 return llt_inplace<Scalar, Lower>::unblocked(matt);
354 template <typename MatrixType>
355 static EIGEN_STRONG_INLINE Index blocked(MatrixType& mat) {
356 Transpose<MatrixType> matt(mat);
357 return llt_inplace<Scalar, Lower>::blocked(matt);
358 }
359 template <typename MatrixType, typename VectorType>
360 static Index rankUpdate(MatrixType& mat, const VectorType& vec, const RealScalar& sigma) {
361 Transpose<MatrixType> matt(mat);
362 return llt_inplace<Scalar, Lower>::rankUpdate(matt, vec.conjugate(), sigma);
363 }
364};
365
366template <typename MatrixType>
367struct LLT_Traits<MatrixType, Lower> {
368 typedef const TriangularView<const MatrixType, Lower> MatrixL;
369 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Upper> MatrixU;
370 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); }
371 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); }
372 static bool inplace_decomposition(MatrixType& m) {
373 return llt_inplace<typename MatrixType::Scalar, Lower>::blocked(m) == -1;
374 }
375};
376
377template <typename MatrixType>
378struct LLT_Traits<MatrixType, Upper> {
379 typedef const TriangularView<const typename MatrixType::AdjointReturnType, Lower> MatrixL;
380 typedef const TriangularView<const MatrixType, Upper> MatrixU;
381 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); }
382 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); }
383 static bool inplace_decomposition(MatrixType& m) {
384 return llt_inplace<typename MatrixType::Scalar, Upper>::blocked(m) == -1;
385 }
386};
387
388} // end namespace internal
389
397template <typename MatrixType, int UpLo_>
398template <typename InputType>
400 eigen_assert(a.rows() == a.cols());
401 const Index size = a.rows();
402 m_matrix.resize(size, size);
403 if (!internal::is_same_dense(m_matrix, a.derived())) m_matrix = a.derived();
404
405 // Compute matrix L1 norm = max abs column sum.
406 m_l1_norm = RealScalar(0);
407 // TODO move this code to SelfAdjointView
408 for (Index col = 0; col < size; ++col) {
409 RealScalar abs_col_sum;
410 if (UpLo_ == Lower)
411 abs_col_sum =
412 m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>();
413 else
414 abs_col_sum =
415 m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>();
416 if (abs_col_sum > m_l1_norm) m_l1_norm = abs_col_sum;
417 }
418
419 m_isInitialized = true;
420 bool ok = Traits::inplace_decomposition(m_matrix);
421 m_info = ok ? Success : NumericalIssue;
422
423 return *this;
424}
425
431template <typename MatrixType_, int UpLo_>
432template <typename VectorType>
433LLT<MatrixType_, UpLo_>& LLT<MatrixType_, UpLo_>::rankUpdate(const VectorType& v, const RealScalar& sigma) {
434 EIGEN_STATIC_ASSERT_VECTOR_ONLY(VectorType);
435 eigen_assert(v.size() == m_matrix.cols());
436 eigen_assert(m_isInitialized);
437 if (internal::llt_inplace<typename MatrixType::Scalar, UpLo>::rankUpdate(m_matrix, v, sigma) >= 0)
438 m_info = NumericalIssue;
439 else
440 m_info = Success;
441
442 return *this;
443}
444
445#ifndef EIGEN_PARSED_BY_DOXYGEN
446template <typename MatrixType_, int UpLo_>
447template <typename RhsType, typename DstType>
448void LLT<MatrixType_, UpLo_>::_solve_impl(const RhsType& rhs, DstType& dst) const {
449 _solve_impl_transposed<true>(rhs, dst);
450}
451
452template <typename MatrixType_, int UpLo_>
453template <bool Conjugate, typename RhsType, typename DstType>
454void LLT<MatrixType_, UpLo_>::_solve_impl_transposed(const RhsType& rhs, DstType& dst) const {
455 dst = rhs;
456
457 matrixL().template conjugateIf<!Conjugate>().solveInPlace(dst);
458 matrixU().template conjugateIf<!Conjugate>().solveInPlace(dst);
459}
460#endif
461
475template <typename MatrixType, int UpLo_>
476template <typename Derived>
477void LLT<MatrixType, UpLo_>::solveInPlace(const MatrixBase<Derived>& bAndX) const {
478 eigen_assert(m_isInitialized && "LLT is not initialized.");
479 eigen_assert(m_matrix.rows() == bAndX.rows());
480 matrixL().solveInPlace(bAndX);
481 matrixU().solveInPlace(bAndX);
482}
483
487template <typename MatrixType, int UpLo_>
489 eigen_assert(m_isInitialized && "LLT is not initialized.");
490 return matrixL() * matrixL().adjoint().toDenseMatrix();
491}
492
497template <typename Derived>
501
506template <typename MatrixType, unsigned int UpLo>
511
512} // end namespace Eigen
513
514#endif // EIGEN_LLT_H
Standard Cholesky decomposition (LL^T) of a matrix and associated features.
Definition LLT.h:70
ComputationInfo info() const
Reports whether previous computation was successful.
Definition LLT.h:174
LLT(Index size)
Default Constructor with memory preallocation.
Definition LLT.h:97
RealScalar rcond() const
Definition LLT.h:152
const MatrixType & matrixLLT() const
Definition LLT.h:162
const Solve< LLT, Rhs > solve(const MatrixBase< Rhs > &b) const
LLT(EigenBase< InputType > &matrix)
Constructs a LLT factorization from a given matrix.
Definition LLT.h:112
Traits::MatrixU matrixU() const
Definition LLT.h:117
const LLT & adjoint() const EIGEN_NOEXCEPT
Definition LLT.h:185
LLT()
Default Constructor.
Definition LLT.h:89
MatrixType reconstructedMatrix() const
Definition LLT.h:488
Traits::MatrixL matrixL() const
Definition LLT.h:123
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
Expression of a selfadjoint matrix from a triangular part of a dense matrix.
Definition SelfAdjointView.h:51
Pseudo expression representing a solving operation.
Definition Solve.h:62
A base class for matrix decomposition and solvers.
Definition SolverBase.h:72
LLT< MatrixType_, UpLo_ > & derived()
Definition EigenBase.h:49
Expression of the transpose of a matrix.
Definition Transpose.h:56
ComputationInfo
Definition Constants.h:438
@ Lower
Definition Constants.h:211
@ Upper
Definition Constants.h:213
@ NumericalIssue
Definition Constants.h:442
@ Success
Definition Constants.h:440
Namespace containing all symbols from the Eigen library.
Definition Core:137
const Eigen::CwiseUnaryOp< Eigen::internal::scalar_sqrt_op< typename Derived::Scalar >, const Derived > sqrt(const Eigen::ArrayBase< Derived > &x)
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
Definition EigenBase.h:33
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition EigenBase.h:61
Derived & derived()
Definition EigenBase.h:49
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition EigenBase.h:59
EIGEN_CONSTEXPR Index size() const EIGEN_NOEXCEPT
Definition EigenBase.h:64