Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
Hyperplane.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2008 Gael Guennebaud <[email protected]>
5// Copyright (C) 2008 Benoit Jacob <[email protected]>
6//
7// This Source Code Form is subject to the terms of the Mozilla
8// Public License v. 2.0. If a copy of the MPL was not distributed
9// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11#ifndef EIGEN_HYPERPLANE_H
12#define EIGEN_HYPERPLANE_H
13
14// IWYU pragma: private
15#include "./InternalHeaderCheck.h"
16
17namespace Eigen {
18
36template <typename Scalar_, int AmbientDim_, int Options_>
38 public:
39 EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(Scalar_,
40 AmbientDim_ == Dynamic ? Dynamic : AmbientDim_ + 1)
41 enum { AmbientDimAtCompileTime = AmbientDim_, Options = Options_ };
42 typedef Scalar_ Scalar;
43 typedef typename NumTraits<Scalar>::Real RealScalar;
46 typedef Matrix<Scalar, Index(AmbientDimAtCompileTime) == Dynamic ? Dynamic : Index(AmbientDimAtCompileTime) + 1, 1,
47 Options>
51
53 EIGEN_DEVICE_FUNC inline Hyperplane() {}
54
55 template <int OtherOptions>
57 : m_coeffs(other.coeffs()) {}
58
61 EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim + 1) {}
62
66 EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e) : m_coeffs(n.size() + 1) {
67 normal() = n;
68 offset() = -n.dot(e);
69 }
70
75 EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d) : m_coeffs(n.size() + 1) {
76 normal() = n;
77 offset() = d;
78 }
79
83 EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1) {
84 Hyperplane result(p0.size());
85 result.normal() = (p1 - p0).unitOrthogonal();
86 result.offset() = -p0.dot(result.normal());
87 return result;
88 }
89
93 EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2) {
94 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
95 Hyperplane result(p0.size());
96 VectorType v0(p2 - p0), v1(p1 - p0);
97 result.normal() = v0.cross(v1);
98 RealScalar norm = result.normal().norm();
99 if (norm <= v0.norm() * v1.norm() * NumTraits<RealScalar>::epsilon()) {
101 m << v0.transpose(), v1.transpose();
103 result.normal() = svd.matrixV().col(2);
104 } else
105 result.normal() /= norm;
106 result.offset() = -p0.dot(result.normal());
107 return result;
108 }
109
114 // FIXME to be consistent with the rest this could be implemented as a static Through function ??
115 EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized) {
116 normal() = parametrized.direction().unitOrthogonal();
117 offset() = -parametrized.origin().dot(normal());
118 }
119
120 EIGEN_DEVICE_FUNC ~Hyperplane() {}
121
123 EIGEN_DEVICE_FUNC inline Index dim() const {
124 return AmbientDimAtCompileTime == Dynamic ? m_coeffs.size() - 1 : Index(AmbientDimAtCompileTime);
125 }
126
128 EIGEN_DEVICE_FUNC void normalize(void) { m_coeffs /= normal().norm(); }
129
133 EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
134
138 EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }
139
142 EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
143
147 EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const {
148 return ConstNormalReturnType(m_coeffs, 0, 0, dim(), 1);
149 }
150
154 EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs, 0, 0, dim(), 1); }
155
159 EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
160
163 EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }
164
168 EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
169
173 EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
174
181 EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const {
182 EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
183 Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
184 // since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
185 // whether the two lines are approximately parallel.
186 if (internal::isMuchSmallerThan(det, Scalar(1))) { // special case where the two lines are approximately parallel.
187 // Pick any point on the first line.
188 if (numext::abs(coeffs().coeff(1)) > numext::abs(coeffs().coeff(0)))
189 return VectorType(coeffs().coeff(1), -coeffs().coeff(2) / coeffs().coeff(1) - coeffs().coeff(0));
190 else
191 return VectorType(-coeffs().coeff(2) / coeffs().coeff(0) - coeffs().coeff(1), coeffs().coeff(0));
192 } else { // general case
193 Scalar invdet = Scalar(1) / det;
194 return VectorType(
195 invdet * (coeffs().coeff(1) * other.coeffs().coeff(2) - other.coeffs().coeff(1) * coeffs().coeff(2)),
196 invdet * (other.coeffs().coeff(0) * coeffs().coeff(2) - coeffs().coeff(0) * other.coeffs().coeff(2)));
197 }
198 }
199
206 template <typename XprType>
207 EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine) {
208 if (traits == Affine) {
209 normal() = mat.inverse().transpose() * normal();
210 m_coeffs /= normal().norm();
211 } else if (traits == Isometry)
212 normal() = mat * normal();
213 else {
214 eigen_assert(0 && "invalid traits value in Hyperplane::transform()");
215 }
216 return *this;
217 }
218
226 template <int TrOptions>
228 TransformTraits traits = Affine) {
229 transform(t.linear(), traits);
230 offset() -= normal().dot(t.translation());
231 return *this;
232 }
233
239 template <typename NewScalarType>
240 EIGEN_DEVICE_FUNC inline
241 typename internal::cast_return_type<Hyperplane,
243 cast() const {
244 return
245 typename internal::cast_return_type<Hyperplane,
247 }
248
250 template <typename OtherScalarType, int OtherOptions>
251 EIGEN_DEVICE_FUNC inline explicit Hyperplane(
253 m_coeffs = other.coeffs().template cast<Scalar>();
254 }
255
260 template <int OtherOptions>
261 EIGEN_DEVICE_FUNC bool isApprox(
263 const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const {
264 return m_coeffs.isApprox(other.m_coeffs, prec);
265 }
266
267 protected:
268 Coefficients m_coeffs;
269};
270
271} // end namespace Eigen
272
273#endif // EIGEN_HYPERPLANE_H
Expression of a fixed-size or dynamic-size block.
Definition Block.h:110
TransposeReturnType transpose()
Definition Transpose.h:160
A hyperplane.
Definition Hyperplane.h:37
static Hyperplane Through(const VectorType &p0, const VectorType &p1)
Definition Hyperplane.h:83
Hyperplane & transform(const MatrixBase< XprType > &mat, TransformTraits traits=Affine)
Definition Hyperplane.h:207
VectorType intersection(const Hyperplane &other) const
Definition Hyperplane.h:181
ConstNormalReturnType normal() const
Definition Hyperplane.h:147
Scalar signedDistance(const VectorType &p) const
Definition Hyperplane.h:133
Hyperplane(const VectorType &n, const VectorType &e)
Definition Hyperplane.h:66
NormalReturnType normal()
Definition Hyperplane.h:154
Hyperplane()
Definition Hyperplane.h:53
const Coefficients & coeffs() const
Definition Hyperplane.h:168
Coefficients & coeffs()
Definition Hyperplane.h:173
internal::cast_return_type< Hyperplane, Hyperplane< NewScalarType, AmbientDimAtCompileTime, Options > >::type cast() const
Definition Hyperplane.h:243
Index dim() const
Definition Hyperplane.h:123
Scalar absDistance(const VectorType &p) const
Definition Hyperplane.h:138
static Hyperplane Through(const VectorType &p0, const VectorType &p1, const VectorType &p2)
Definition Hyperplane.h:93
const Scalar & offset() const
Definition Hyperplane.h:159
Hyperplane(const VectorType &n, const Scalar &d)
Definition Hyperplane.h:75
bool isApprox(const Hyperplane< Scalar, AmbientDimAtCompileTime, OtherOptions > &other, const typename NumTraits< Scalar >::Real &prec=NumTraits< Scalar >::dummy_precision()) const
Definition Hyperplane.h:261
Hyperplane(const Hyperplane< OtherScalarType, AmbientDimAtCompileTime, OtherOptions > &other)
Definition Hyperplane.h:251
void normalize(void)
Definition Hyperplane.h:128
Scalar & offset()
Definition Hyperplane.h:163
Hyperplane(Index _dim)
Definition Hyperplane.h:61
Hyperplane(const ParametrizedLine< Scalar, AmbientDimAtCompileTime > &parametrized)
Definition Hyperplane.h:115
VectorType projection(const VectorType &p) const
Definition Hyperplane.h:142
Eigen::Index Index
Definition Hyperplane.h:44
Hyperplane & transform(const Transform< Scalar, AmbientDimAtCompileTime, Affine, TrOptions > &t, TransformTraits traits=Affine)
Definition Hyperplane.h:227
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:500
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
const Inverse< Derived > inverse() const
Definition InverseImpl.h:279
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
A parametrized line.
Definition ParametrizedLine.h:33
constexpr const Scalar & coeff(Index rowId, Index colId) const
Definition PlainObjectBase.h:198
const MatrixVType & matrixV() const
Definition SVDBase.h:189
Represents an homogeneous transformation in a N dimensional space.
Definition Transform.h:192
ConstLinearPart linear() const
Definition Transform.h:374
ConstTranslationPart translation() const
Definition Transform.h:384
TransformTraits
Definition Constants.h:453
@ ComputeFullV
Definition Constants.h:393
@ Affine
Definition Constants.h:458
@ Isometry
Definition Constants.h:455
Namespace containing all symbols from the Eigen library.
Definition Core:137
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
const int Dynamic
Definition Constants.h:25
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition Meta.h:523