Eigen  3.4.90 (git rev 5a9f66fb35d03a4da9ef8976e67a61b30aa16dcf)
 
Loading...
Searching...
No Matches
Umeyama.h
1// This file is part of Eigen, a lightweight C++ template library
2// for linear algebra.
3//
4// Copyright (C) 2009 Hauke Heibel <[email protected]>
5//
6// This Source Code Form is subject to the terms of the Mozilla
7// Public License v. 2.0. If a copy of the MPL was not distributed
8// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9
10#ifndef EIGEN_UMEYAMA_H
11#define EIGEN_UMEYAMA_H
12
13// This file requires the user to include
14// * Eigen/Core
15// * Eigen/LU
16// * Eigen/SVD
17// * Eigen/Array
18
19// IWYU pragma: private
20#include "./InternalHeaderCheck.h"
21
22namespace Eigen {
23
24#ifndef EIGEN_PARSED_BY_DOXYGEN
25
26// These helpers are required since it allows to use mixed types as parameters
27// for the Umeyama. The problem with mixed parameters is that the return type
28// cannot trivially be deduced when float and double types are mixed.
29namespace internal {
30
31// Compile time return type deduction for different MatrixBase types.
32// Different means here different alignment and parameters but the same underlying
33// real scalar type.
34template <typename MatrixType, typename OtherMatrixType>
35struct umeyama_transform_matrix_type {
36 enum {
37 MinRowsAtCompileTime =
38 internal::min_size_prefer_dynamic(MatrixType::RowsAtCompileTime, OtherMatrixType::RowsAtCompileTime),
39
40 // When possible we want to choose some small fixed size value since the result
41 // is likely to fit on the stack. So here, min_size_prefer_dynamic is not what we want.
42 HomogeneousDimension = int(MinRowsAtCompileTime) == Dynamic ? Dynamic : int(MinRowsAtCompileTime) + 1
43 };
44
45 typedef Matrix<typename traits<MatrixType>::Scalar, HomogeneousDimension, HomogeneousDimension,
46 AutoAlign | (traits<MatrixType>::Flags & RowMajorBit ? RowMajor : ColMajor), HomogeneousDimension,
47 HomogeneousDimension>
48 type;
49};
50
51} // namespace internal
52
53#endif
54
93template <typename Derived, typename OtherDerived>
94typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type umeyama(
95 const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, bool with_scaling = true) {
96 typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
97 typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
98 typedef typename NumTraits<Scalar>::Real RealScalar;
99
100 EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
101 EIGEN_STATIC_ASSERT(
102 (internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
103 YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
104
105 enum { Dimension = internal::min_size_prefer_dynamic(Derived::RowsAtCompileTime, OtherDerived::RowsAtCompileTime) };
106
107 typedef Matrix<Scalar, Dimension, 1> VectorType;
108 typedef Matrix<Scalar, Dimension, Dimension> MatrixType;
109 typedef typename internal::plain_matrix_type_row_major<Derived>::type RowMajorMatrixType;
110
111 const Index m = src.rows(); // dimension
112 const Index n = src.cols(); // number of measurements
113
114 // required for demeaning ...
115 const RealScalar one_over_n = RealScalar(1) / static_cast<RealScalar>(n);
116
117 // computation of mean
118 const VectorType src_mean = src.rowwise().sum() * one_over_n;
119 const VectorType dst_mean = dst.rowwise().sum() * one_over_n;
120
121 // demeaning of src and dst points
122 const RowMajorMatrixType src_demean = src.colwise() - src_mean;
123 const RowMajorMatrixType dst_demean = dst.colwise() - dst_mean;
124
125 // Eq. (38)
126 const MatrixType sigma = one_over_n * dst_demean * src_demean.transpose();
127
129
130 // Initialize the resulting transformation with an identity matrix...
131 TransformationMatrixType Rt = TransformationMatrixType::Identity(m + 1, m + 1);
132
133 // Eq. (39)
134 VectorType S = VectorType::Ones(m);
135
136 if (svd.matrixU().determinant() * svd.matrixV().determinant() < 0) {
137 Index tmp = m - 1;
138 S(tmp) = -1;
139 }
140
141 // Eq. (40) and (43)
142 Rt.block(0, 0, m, m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
143
144 if (with_scaling) {
145 // Eq. (36)-(37)
146 const Scalar src_var = src_demean.rowwise().squaredNorm().sum() * one_over_n;
147
148 // Eq. (42)
149 const Scalar c = Scalar(1) / src_var * svd.singularValues().dot(S);
150
151 // Eq. (41)
152 Rt.col(m).head(m) = dst_mean;
153 Rt.col(m).head(m).noalias() -= c * Rt.topLeftCorner(m, m) * src_mean;
154 Rt.block(0, 0, m, m) *= c;
155 } else {
156 Rt.col(m).head(m) = dst_mean;
157 Rt.col(m).head(m).noalias() -= Rt.topLeftCorner(m, m) * src_mean;
158 }
159
160 return Rt;
161}
162
163} // end namespace Eigen
164
165#endif // EIGEN_UMEYAMA_H
TransposeReturnType transpose()
Definition Transpose.h:160
ConstColwiseReturnType colwise() const
Definition DenseBase.h:511
ConstRowwiseReturnType rowwise() const
Definition DenseBase.h:501
EIGEN_CONSTEXPR Index cols() const EIGEN_NOEXCEPT
Definition EigenBase.h:61
EIGEN_CONSTEXPR Index rows() const EIGEN_NOEXCEPT
Definition EigenBase.h:59
Two-sided Jacobi SVD decomposition of a rectangular matrix.
Definition JacobiSVD.h:500
Base class for all dense matrices, vectors, and expressions.
Definition MatrixBase.h:52
const DiagonalWrapper< const Derived > asDiagonal() const
Definition DiagonalMatrix.h:344
Scalar determinant() const
Definition Determinant.h:90
The matrix class, also used for vectors and row-vectors.
Definition Matrix.h:186
const SingularValuesType & singularValues() const
Definition SVDBase.h:200
const MatrixUType & matrixU() const
Definition SVDBase.h:173
const MatrixVType & matrixV() const
Definition SVDBase.h:189
const SumReturnType sum() const
Definition VectorwiseOp.h:458
internal::umeyama_transform_matrix_type< Derived, OtherDerived >::type umeyama(const MatrixBase< Derived > &src, const MatrixBase< OtherDerived > &dst, bool with_scaling=true)
Returns the transformation between two point sets.
Definition Umeyama.h:94
@ ColMajor
Definition Constants.h:318
@ RowMajor
Definition Constants.h:320
@ AutoAlign
Definition Constants.h:322
const unsigned int RowMajorBit
Definition Constants.h:70
Namespace containing all symbols from the Eigen library.
Definition Core:137
EIGEN_DEFAULT_DENSE_INDEX_TYPE Index
The Index type as used for the API.
Definition Meta.h:83
const int Dynamic
Definition Constants.h:25
Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
Definition Meta.h:523